[TensorFlow] demo1 完整的代码和运行结果

本文通过使用TensorFlow实现线性回归模型,演示了如何利用随机生成的数据集训练模型,并逐步调整权重和偏置,最终逼近原始设定的线性关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import tensorflow as tf
import numpy as np


x_data = np.random.rand(100).astype(np.float32)
y_data = x_data*0.1 + 0.3
#print(x_data)
#print(y_data)
Weights = tf.Variable(tf.random_uniform([1], -1.0, 1.0))
biases = tf.Variable(tf.zeros([1]))

#print(tf.random_uniform([1], -1.0, 1.0))
#print(tf.Variable(tf.zeros([1])))
#print(Weights)
#print(Weights)

y = Weights*x_data + biases
#tf.square(y-y_data)
#print(tf.square(y-y_data))

loss = tf.reduce_mean(tf.square(y-y_data))

optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)

#init = tf.initialize_all_variables() # old api 
init = tf.global_variables_initializer() #new api

sess = tf.Session()
sess.run(init)
#print(sess.run(init))
#print(sess.run(train))

for step in range(201):
    sess.run(train)
    if step % 20 == 0:
        print(step, sess.run(Weights), sess.run(biases))



由结果可以看出:

y_data = x_data*0.1 + 0.3 

0.1 = 0.10000084

0.3 = 0.29999959

这么说的话,我们的一次函数的模型就建立起来了。

字符识别。安装tensorflow。 conda create -n cpu_avx2 python=3.7 The following packages will be downloaded: package | build ---------------------------|----------------- certifi-2020.4.5.1 | py37_0 156 KB openssl-1.1.1g | he774522_0 4.8 MB python-3.7.7 | h60c2a47_2 18.3 MB setuptools-46.1.3 | py37_0 528 KB sqlite-3.31.1 | h2a8f88b_1 1.3 MB zlib-1.2.11 | h62dcd97_4 132 KB ------------------------------------------------------------ Total: 25.2 MB The following NEW packages will be INSTALLED: ca-certificates pkgs/main/win-64::ca-certificates-2020.1.1-0 certifi pkgs/main/win-64::certifi-2020.4.5.1-py37_0 openssl pkgs/main/win-64::openssl-1.1.1g-he774522_0 pip pkgs/main/win-64::pip-20.0.2-py37_1 python pkgs/main/win-64::python-3.7.7-h60c2a47_2 setuptools pkgs/main/win-64::setuptools-46.1.3-py37_0 sqlite pkgs/main/win-64::sqlite-3.31.1-h2a8f88b_1 vc pkgs/main/win-64::vc-14.1-h0510ff6_4 vs2015_runtime pkgs/main/win-64::vs2015_runtime-14.16.27012-hf0eaf9b_1 wheel pkgs/main/win-64::wheel-0.34.2-py37_0 wincertstore pkgs/main/win-64::wincertstore-0.2-py37_0 zlib pkgs/main/win-64::zlib-1.2.11-h62dcd97_4 Proceed ([y]/n)? y Downloading and Extracting Packages setuptools-46.1.3 | 528 KB | ############################################################################ | 100% python-3.7.7 | 18.3 MB | ############################################################################ | 100% certifi-2020.4.5.1 | 156 KB | ############################################################################ | 100% zlib-1.2.11 | 132 KB | ###################
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值