tensorflow mnist 示例运行结果

本文记录了使用Python脚本fully_connected_feed.py对MNIST数据集进行训练的过程,展示了从数据提取到训练各阶段损失变化及最终评估精度的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

[jiangzhijun@localhost mnist]$ ls -al
总用量 52
drwxrwxr-x. 3 jiangzhijun jiangzhijun 4096 3月  19 20:31 .
drwxrwxr-x. 5 jiangzhijun jiangzhijun   67 5月  18 2016 ..
-rw-rw-r--. 1 jiangzhijun jiangzhijun 2183 5月  18 2016 BUILD
drwxr-xr-x. 2 jiangzhijun jiangzhijun 4096 3月  19 20:37 data
-rw-rw-r--. 1 jiangzhijun jiangzhijun 8632 5月  18 2016 fully_connected_feed.py
-rw-rw-r--. 1 jiangzhijun jiangzhijun  967 5月  18 2016 __init__.py
-rw-rw-r--. 1 jiangzhijun jiangzhijun 1095 5月  18 2016 input_data.py
-rw-rw-r--. 1 jiangzhijun jiangzhijun 5286 5月  18 2016 mnist.py
-rw-rw-r--. 1 jiangzhijun jiangzhijun 2022 5月  18 2016 mnist_softmax.py
-rw-rw-r--. 1 jiangzhijun jiangzhijun 6831 5月  18 2016 mnist_with_summaries.py
[jiangzhijun@localhost mnist]$ python fully_connected_feed.py
Extracting data/train-images-idx3-ubyte.gz
Extracting data/train-labels-idx1-ubyte.gz
Extracting data/t10k-images-idx3-ubyte.gz
Extracting data/t10k-labels-idx1-ubyte.gz
Step 0: loss = 2.28 (0.009 sec)
Step 100: loss = 2.14 (0.004 sec)
Step 200: loss = 1.84 (0.004 sec)
Step 300: loss = 1.54 (0.004 sec)
Step 400: loss = 1.20 (0.004 sec)
Step 500: loss = 0.86 (0.004 sec)
Step 600: loss = 0.84 (0.004 sec)
Step 700: loss = 0.66 (0.004 sec)
Step 800: loss = 0.57 (0.004 sec)
Step 900: loss = 0.51 (0.004 sec)
Training Data Eval:
  Num examples: 55000  Num correct: 47726  Precision @ 1: 0.8677
Validation Data Eval:
  Num examples: 5000  Num correct: 4356  Precision @ 1: 0.8712
Test Data Eval:
  Num examples: 10000  Num correct: 8742  Precision @ 1: 0.8742
Step 1000: loss = 0.56 (0.005 sec)
Step 1100: loss = 0.42 (0.089 sec)
Step 1200: loss = 0.62 (0.004 sec)
Step 1300: loss = 0.43 (0.004 sec)
Step 1400: loss = 0.41 (0.004 sec)
Step 1500: loss = 0.37 (0.004 sec)
Step 1600: loss = 0.29 (0.004 sec)
Step 1700: loss = 0.56 (0.004 sec)
Step 1800: loss = 0.31 (0.004 sec)
Step 1900: loss = 0.24 (0.004 sec)
Training Data Eval:
  Num examples: 55000  Num correct: 49258  Precision @ 1: 0.8956
Validation Data Eval:
  Num examples: 5000  Num correct: 4513  Precision @ 1: 0.9026
Test Data Eval:
  Num examples: 10000  Num correct: 8975  Precision @ 1: 0.8975

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值