第一步 检查驱动版本
输入命令
nvidia-smi
首先要看自己是什么显卡,再选择驱动,比如我现在在用一个2080ti的服务器,驱动是470.256.02,那我就要按照驱动去选别的了。个人不建议为了cuda换驱动,除非万不得已,因为安驱动真的麻烦
第二步 检查驱动支持的cuda
| CUDA Toolkit | Toolkit Driver Version | |
|---|---|---|
| Linux x86_64 Driver Version | Windows x86_64 Driver Version | |
| CUDA 12.5 Update 1 | >=555.42.06 | >=555.85 |
| CUDA 12.5 GA | >=555.42.02 | >=555.85 |
| CUDA 12.4 Update 1 | >=550.54.15 | >=551.78 |
| CUDA 12.4 GA | >=550.54.14 | >=551.61 |
| CUDA 12.3 Update 1 | >=545.23.08 | >=546.12 |
| CUDA 12.3 GA | >=545.23.06 | >=545.84 |
| CUDA 12.2 Update 2 | >=535.104.05 | >=537.13 |
| CUDA 12.2 Update 1 | >=535.86.09 | >=536.67 |
| CUDA 12.2 GA | >=535.54.03 | >=536.25 |
| CUDA 12.1 Update 1 | >=530.30.02 | >=531.14 |
| CUDA 12.1 GA | >=530.30.02 | >=531.14 |
| CUDA 12.0 Update 1 | >=525.85.12 | >=528.33 |
| CUDA 12.0 GA | >=525.60.13 | >=527.41 |
| CUDA 11.8 GA | >=520.61.05 | >=520.06 |
| CUDA 11.7 Update 1 | >=515.48.07 | >=516.31 |
| CUDA 11.7 GA | >=515.43.04 | >=516.01 |
| CUDA 11.6 Update 2 | >=510.47.03 | >=511.65 |
| CUDA 11.6 Update 1 | >=510.47.03 | >=511.65 |
| CUDA 11.6 GA | >=510.39.01 | >=511.23 |
| CUDA 11.5 Update 2 | >=495.29.05 | >=496.13 |
| CUDA 11.5 Update 1 | >=495.29.05 | >=496.13 |
| CUDA 11.5 GA | >=495.29.05 | >=496.04 |
| CUDA 11.4 Update 4 | >=470.82.01 | >=472.50 |
| CUDA 11.4 Update 3 | >=470.82.01 | >=472.50 |
| CUDA 11.4 Update 2 | >=470.57.02 | >=471.41 |
| CUDA 11.4 Update 1 | >=470.57.02 | >=471.41 |
| CUDA 11.4.0 GA | >=470.42.01 | >=471.11 |
| CUDA 11.3.1 Update 1 | >=465.19.01 | >=465.89 |
| CUDA 11.3.0 GA | >=465.19.01 | >=465.89 |
| CUDA 11.2.2 Update 2 | >=460.32.03 | >=461.33 |
| CUDA 11.2.1 Update 1 | >=460.32.03 | >=461.09 |
| CUDA 11.2.0 GA | >=460.27.03 | >=460.82 |
| CUDA 11.1.1 Update 1 | >=455.32 | >=456.81 |
| CUDA 11.1 GA | >=455.23 | >=456.38 |
| CUDA 11.0.3 Update 1 | >= 450.51.06 | >= 451.82 |
| CUDA 11.0.2 GA | >= 450.51.05 | >= 451.48 |
| CUDA 11.0.1 RC | >= 450.36.06 | >= 451.22 |
| CUDA 10.2.89 | >= 440.33 | >= 441.22 |
| CUDA 10.1 (10.1.105 general release, and updates) | >= 418.39 | >= 418.96 |
| CUDA 10.0.130 | >= 410.48 | >= 411.31 |
| CUDA 9.2 (9.2.148 Update 1) | >= 396.37 | >= 398.26 |
| CUDA 9.2 (9.2.88) | >= 396.26 | >= 397.44 |
| CUDA 9.1 (9.1.85) | >= 390.46 | >= 391.29 |
| CUDA 9.0 (9.0.76) | >= 384.81 | >= 385.54 |
| CUDA 8.0 (8.0.61 GA2) | >= 375.26 | >= 376.51 |
| CUDA 8.0 (8.0.44) | >= 367.48 | >= 369.30 |
| CUDA 7.5 (7.5.16) | >= 352.31 | >= 353.66 |
| CUDA 7.0 (7.0.28) | >= 346.46 | >= 347.62 |
比如我的那个,最多安装cuda11.3
第三步 根据cuda找PyTorch
Previous PyTorch Versions | PyTorch
https://pytorch.org/get-started/previous-versions/这我就不展示了,内容太多了。
比如我用的cuda11.3,我就可以安装pytorch1.11。
第四步 根据PyTorch找Pyhon
|
| Python |
|---|---|
| ≥2.1, ≤2.4 | ≥3.9, ≤3.12 |
| ≥2.0, ≤2.3 | ≥3.8, ≤3.11 |
| ≥1.13, ≤2.2 | ≥3.8, ≤3.11 |
| ≥1.12, ≤2.1 | ≥3.8, ≤3.11 |
| ≥1.11, ≤2.0 | ≥3.8, ≤3.10 |
| ≥1.10, ≤1.13 | ≥3.7, ≤3.10 |
| ≥1.10, ≤1.13 | ≥3.7, ≤3.10 |
| ≥1.9, ≤1.12 | ≥3.7, ≤3.10 |
| ≥1.8, ≤1.11 | ≥3.7, ≤3.9 |
| ≥1.7, ≤1.10 | ≥3.6, ≤3.9 |
| ≥1.6, ≤1.9 | ≥3.6, ≤3.9 |
| ≥1.4, ≤1.8 | ≥3.6, ≤3.9 |
| ≥1.4, ≤1.8 | ≥3.6, ≤3.8 |
| ≥1.3, ≤1.8 | ≥3.6, ≤3.8 |
| ≥1.3, ≤1.7 | ≥3.6, ≤3.8 |
如果你真的需要更高版本的cuda,那就得尝试升级驱动了

3万+

被折叠的 条评论
为什么被折叠?



