DAG优化
Time Limit: 1000 ms Memory Limit: 65536 KiB
Problem Description
大家都学过了代码优化,其中有一个DAG优化,这次我们就练习这个操作。
Input
输入第一行为一个整数n(n < 100),表示该组输入的表达式的个数
之后n行为表达式,每个变量为一个字母,表达式仅包括二元运算 + - * /
例如:A=B+C
Output
通过构造DAG图,进行代码优化,只需要保留AB,删除无用变量,删除变量时,尽量保留最早出现的变量。
PS:保证AB的值不同
Sample Input
3 A=B+C B=B+B A=C+C
Sample Output
B=B+B A=C+C
#include<bits/stdc++.h>
using namespace std;
int cnt=0;
struct Node
{
int left=-1;
int right=-1;
char id;
vector<char>var;
} node[111];
int n;
int find_var(int i,char c)
{
int num=node[i].var.size();
for(int j=0; j<num; j++)
if(c==node[i].var[j])
return 1;
return 0;
}
int add_node(char c)
{
for(int i=cnt-1; i>=0; i--)
{
if(node[i].id==c||find_var(i,c))
return i;
}
node[cnt].id=c;
return cnt++;
}
void add_operator(char op,char c,int l,int r)
{
for(int i=cnt-1; i>=0; i--)
{
if(node[i].left==l&&node[i].right==r&&node[i].id==op)
{
node[i].var.push_back(c);
return ;
}
}
node[cnt].id=op;
node[cnt].left=l;
node[cnt].right=r;
node[cnt].var.push_back(c);
cnt++;
}
int flag[111];
void dfs(int i)
{
if(node[i].left!=-1)
{
flag[i]=1;
dfs(node[i].left);
dfs(node[i].right);
}
}
char a[111][11];
char ans[111][11];
int main()
{
cin>>n;
for(int i=0; i<n; i++)
{
cin>>a[i];
int l=add_node(a[i][2]);
int r=add_node(a[i][4]);
add_operator(a[i][3],a[i][0],l,r);
}
for(int i=0; i<cnt; i++)
{
if(node[i].left!=-1)
{
ans[i][0]=node[i].var[0];
ans[i][1]='=';
Node ll=node[node[i].left];
Node rr=node[node[i].right];
ans[i][2]=ll.var.size()>0?ll.var[0]:ll.id;
ans[i][3]=node[i].id;
ans[i][4]=rr.var.size()>0?rr.var[0]:rr.id;
}
}
for(int i=cnt-1; i>=0; i--)
{
if(ans[i][0]=='A')
{
dfs(i);
break;
}
}
for(int i=cnt-1; i>=0; i--)
{
if(ans[i][0]=='B')
{
dfs(i);
break;
}
}
for(int i=0; i<cnt; i++)
{
if(flag[i])
puts(ans[i]);
}
}