[LeetCode]33. Search in Rotated Sorted Array

题目:Suppose a sorted array is rotatedat some pivot unknown to you beforehand.

(i.e., 0 1 2 4 5 6 7 might become 4 5 6 7 01 2).You are given a target value to search.

If found in the array return its index,otherwise return -1.

 You may assume no duplicate exists in thearray.

翻译

假定一个数组在一个我们预先不知道的轴点旋转。

例如,0 1 2 4 5 6 7可能会变为4 5 6 7 0 1 2。

给你一个目标值去搜索,如果找到了则返回它的索引,否则返回-1。

你可以假定没有重复的元素存在于数组中。

class Solution {
public:
    int search(vector<int>& nums, int target) {
        int l = 0, r = nums.size()-1;
        while (l<=r) {
            int mid = (r-l)/2+l;
            if (nums[mid] == target)
                return mid;
            if (nums[mid] < nums[r]) {
                if (nums[mid]<target && target<=nums[r])
                    l = mid+1;
                else
                    r = mid-1;
            } else {
                if(nums[l]<=target && target<nums[mid])
                    r = mid-1;
                else
                    l = mid+1;
            }
        }
        return -1;
    }
};
法二:

class Solution {
public:
	int search(int A[], int n, int target) {
		int lo = 0, hi = n - 1;
		// 找到最小值的索引
		while (lo<hi){
			int mid = (lo + hi) / 2;
			if (A[mid]>A[hi]) lo = mid + 1;
			else hi = mid;
		}
		// lo==hi是最小值的索引也是数组旋转的位置
		int rot = lo;
		lo = 0; hi = n - 1;
		// 使用二分查找
		while (lo <= hi){
			int mid = (lo + hi) / 2;
			int realmid = (mid + rot) % n;
			if (A[realmid] == target) return realmid;
			if (A[realmid]<target)lo = mid + 1;
			else hi = mid - 1;
		}
		return -1;
	}
};

### LeetCode Problem 33 的 C++ 实现 LeetCode33 题通常被称为 **Search in Rotated Sorted Array**,其目标是在一个旋转后的有序数组中查找某个特定的目标值。如果存在该目标值,则返回它的索引;否则返回 `-1`。 以下是基于二分查找法的 C++ 解决方案: ```cpp class Solution { public: int search(vector<int>& nums, int target) { int left = 0; int right = nums.size() - 1; while (left <= right) { int mid = left + (right - left) / 2; if (nums[mid] == target) { return mid; // 找到目标值 } // 判断哪一侧是有序的 if (nums[left] <= nums[mid]) { // 左侧有序 if (target >= nums[left] && target < nums[mid]) { right = mid - 1; // 缩小范围至左侧 } else { left = mid + 1; // 转向右侧 } } else { // 右侧有序 if (target > nums[mid] && target <= nums[right]) { left = mid + 1; // 缩小范围至右侧 } else { right = mid - 1; // 转向左侧 } } } return -1; // 如果未找到目标值 } }; ``` 上述代码实现了针对旋转排序数组的有效搜索算法[^4]。通过判断当前中间位置两侧哪个部分保持有序,可以进一步缩小搜索空间,从而达到高效的目的。 #### 关键点解析 - 使用 `while (left <= right)` 循环条件来确保不会错过任何可能解。 - 当前区间 `[left, right]` 中间位置定义为 `mid`,并比较 `nums[mid]` 和目标值的关系。 - 若左半边有序 (`nums[left] <= nums[mid]`) 并且目标位于此范围内,则继续在左边查找;反之则转向右边。 - 同理处理右半边的情况。 最终时间复杂度为 \(O(\log n)\),其中 \(n\) 是输入数组长度。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值