作者:孤剑
今天老师于c1-305对我们所有的作品进行了评选,我们的作品也得到了老师一点赞许,说方法新意!嘿嘿!终于我们忙了一个4天的作品得到了老师的肯定,我们当然高兴了,所以我们小组决定将我们的合作一直延续下去,干出更加辉煌的成绩。
然而,我们的作品任然还有一些细节问题的考虑,今天晚上我们就准备完成,现在将我们的第一部作品放在这里鼓励鼓励自己。也希望有更多的人能一起讨论讨论。
学校名称:沈阳建筑大学
参赛队员:刘京城、吕小苏、邓尚俊
指导教师:
面试的时间最优化问题
摘要
本文对B题进行了研究。按照公司的要求,四名求职者的顺序一旦确定,在以下各阶段中面试的顺序将不再改变,由于每个求职者,在三个阶段面试的时间不同(且固定),所以对任意两名求职者A、B,按A在前,B在后的顺序进行面试时,可能存在两种情况:I、当A进行完一个阶段j的面试后,B还未完成前一阶段j-1的面试,所以j阶段的考官必须等待B完成j-1阶段的面试后,才可对B进行j阶段的面试,这样就出现了,考官等待求职者的情况。II、当B完成j-1的面试后,A还未完成j阶段的面试,所以,B必须等待A完成j阶段的面试后,才能进入j阶段的面试,这样就出现了求职者等待求职者的情况。以上两种情况,必然延长了整个面试过程。要想使四个求职者能一起最早离开公司,即他们所用的面试时间最短,只要是考官等候求职者的时间和求职者等候求职者的时间之和最短,这样就使求职者和考官的时间利用率达到了最高。他们就能以最短的时间完成面试一起离开公司。
首先我们对给出的面试时间表格进行分析,用计算机编程算出任意两个求职者按照不同的顺序参加面试时,求职者等求职者的时间和考官等求职者的时间之和,然后用图论法建模,将算出的时间表达有向赋权图的权值,问题转化成求有向赋权图(图1)中连接四个顶点的路径最短问题。我们利用MATLAB编程,按从小到大的顺序依次找出n-1(n表示参加面试的人数)条权值最小边,然后用人工参与的方式,将找出的n-1条边排出最优顺序。最后,得出丁、甲、乙、丙的顺序为最优方案,共用84分钟。即:三人可在9:24一起离开公司。
想到该问题涉及时间与人数有关,若想节省时间,很值得推广。于是我们又对该模型进行了推广,给出了几个求职者如何求最优方案的方法。
一、问题的提出
四个求职者参加面试,每个求职者在每个阶段面试时间不一样,如何安排面试顺序使所用时间最短,成为我们要解决的重点问题,具体要完成以下工作:
1.??????? 通过建模求解,得出四个求职者完成面试所需时间最短的排列方案;
2.??????? 结合实际情况,找出该模型的推广方案。
二、问题的分析
?要想解决时间的最优化问题,必须满足以下条件:
1.? 任意两个求职者之间,考官等候求职者的时间与求职者等候求职者的时间之和最短;
2.? 选出一条路径,该路径无重复的经过所有顶点,且权值之和为最小。
用图论法建模求最短路径。
图1
三、模型假设
1.??????? 面试者由一个阶段到下一个阶段参加面试,其间必有时间间隔,我们假定该时间间隔为0;
2.??????? 我们假设参加面试的求职者都是平等且独立的,即他们面试的顺序与考官无关;
3.??????? 参加面试的求职者没有约定他们面试的先后顺序;
4.??????