2Sum
Given an array of integers, return indices of the two numbers such that they add up to a specific target.
You may assume that each input would have exactly one solution.
Example:
Given nums = [2, 7, 11, 15], target = 9,
Because nums[0] + nums[1] = 2 + 7 = 9,
return [0, 1].
这道题直接二重循环暴力解很有可能会超时,我就试了一下,竟然没有。
vector<int> twoSum(vector<int>& nums, int target) {
std::vector<int> ans;
for (int i = 0; i < nums.size()-1; i++) {
for (int j = i+1; j < nums.size(); j++) {
if (nums[i] + nums[j] == target) {
ans.push_back(i);
ans.push_back(j);
return ans;
}
}
}
return ans;
}
但从judge的结果来看,很显然有更好的方法。看了讨论区的内容,发现基本思路是利用哈希表的快速查找来实现O(n)的时间复杂度,根据思路自己尝试了实现。
vector<int> twoSum(vector<int>& nums,int target) {
std::vector<int> ans;
std::map<int,int> hashmap;
for (int i =0; i < nums.size(); i++) {
if (!hashmap.count(nums[i])) {
hashmap.insert(make_pair(nums[i],i));
}
if (hashmap.count(target-nums[i])) {
int another = hashmap[target-nums[i]];
if (another != i) {
ans.push_back(another);
ans.push_back(i);
}
}
}
return ans;
}
3Sum
Given an array S of n integers, are there elements a, b, c in S such that a + b + c = 0? Find all unique triplets in the array which gives the sum of zero.
Note: The solution set must not contain duplicate triplets.
For example, given array S = [-1, 0, 1, 2, -1, -4], A solution set is: [ [-1, 0, 1], [-1, -1, 2] ]这道题三重循环O(n^3)显然是不可能会AC的,我考虑了一下,觉得应该可以通过结合O(n) 的2Sum将时间复杂度降到O(n^2)
最外层循环是给定数组,每次固定一个元素,在剩余的元素中寻找相加结果为给定元素相反数的组合。
想了一下,2Sum的题目是对于每个数都有唯一的组合,而在这里要套用的话,必须是允许没有组合或者有多个不重复的组合。
于是我修改了一下,但是仍然超时,以下是超时的代码
class Solution {
public:
vector<vector<int>> threeSum(vector<int>& nums) {
vector<vector<int>> ans;
if (nums.size() < 3) return ans;
sort(nums.begin(),nums.end());
int a;
for (int i = 0; i < nums.size(); i++) {
if (i > 0 && nums[i] == nums[i-1]) {
continue;
} else {
a = nums[i];
}
// b+c=-a
bool flag = false;
map<int, int> hashmap;
for (int j = i+1; j < nums.size(); j++) {
if (!hashmap.count(nums[j])) {
flag = false;
hashmap.insert(make_pair(nums[j], j));
} else if(flag) {
continue;
}
if (hashmap.count(-a-nums[j])) {
int another = hashmap[-a-nums[j]];
if (another != j) {
flag = true;
vector<int> ans1;
ans1.push_back(a);
ans1.push_back(-a-nums[j]);
ans1.push_back(nums[j]);
ans.push_back(ans1);
}
}
}
}
return ans;
}
};
实在解决不了,我上网搜了一下,发现里面那层针对排序后的数组,可以用左右指针来寻找不重复的组合,以下是代码。
vector<vector<int>> threeSum(vector<int>& nums) {
vector<vector<int>> ans;
if (nums.size() < 3) return ans;
sort(nums.begin(),nums.end());
int a;
for (int i = 0; i < nums.size()-2; i++) {
if (i > 0 && nums[i] == nums[i-1]) {
continue; // 排序后如果前面已经被选作a,相同的数不必再次作为a
} else {
a = nums[i];
}
// 在数组剩余的后面部分寻找两数之和为-a的组合,结果不能重复
int left = i+1;
int right = nums.size()-1;
while (left < right)
{
if (nums[left] + nums[right] == -a) {
vector<int> oneAns;
oneAns.push_back(a);
oneAns.push_back(nums[left]);
oneAns.push_back(nums[right]);
ans.push_back(oneAns);
while (left < right && nums[left+1] == nums[left]) left++;
while (right > left && nums[right-1] == nums[right]) right--;
left++;
right--;
} else if (nums[left] + nums[right] < -a) {
left++;
} else {
right--;
}
}
}
return ans;
}