最新机器学习入门教材-Python for Probability,Statistics, and Machine Learning Third Edition

这本书介绍了使用Python语言进行概率、统计和机器学习的基础知识和应用。这本书更新到了Python 3.8+版本,并包含大量实用的代码示例和图形可视化,以帮助读者理解和应用这些概念。书中涵盖了从Python的安装与设置,到科学计算库(如Numpy、Scipy、Pandas等)的使用,再到概率与统计理论、机器学习算法及其实现的广泛内容。

书本目录

  1. Getting Started with Scientific Python

    • Installation and Setup
    • Numpy
    • Matplotlib
    • IPython
    • Jupyter Notebook
    • Scipy
    • Pandas
    • Sympy
    • Xarray for High Dimensional Dataframes
    • Interfacing with Compiled Libraries
    • Integrated Development Environments
    • Quick Guide to Performance and Parallel Programming
    • Other Resources
  2. Probability

    • Introduction
    • Understanding Probability Density
    • Random Variables
    • Continuous Random Variables
    • Transformation of Variables Beyond Calculus
    • Independent Random Variables
Through exposure to the news and social media, you are probably aware of the fact that machine learning has become one of the most exciting technologies of our time and age. Large companies, such as Google, Facebook, Apple, Amazon, and IBM, heavily invest in machine learning research and applications for good reasons. While it may seem that machine learning has become the buzzword of our time and age, it is certainly not a fad. This exciting field opens the way to new possibilities and has become indispensable to our daily lives. This is evident in talking to the voice assistant on our smartphones, recommending the right product for our customers, preventing credit card fraud, filtering out spam from our email inboxes, detecting and diagnosing medical diseases, the list goes on and on. If you want to become a machine learning practitioner, a better problem solver, or maybe even consider a career in machine learning research, then this book is for you. However, for a novice, the theoretical concepts behind machine learning can be quite overwhelming. Many practical books have been published in recent years that will help you get started in machine learning by implementing powerful learning algorithms. Getting exposed to practical code examples and working through example applications of machine learning are a great way to dive into this field. Concrete examples help illustrate the broader concepts by putting the learned material directly into action. However, remember that with great power comes great responsibility! In addition to offering a hands-on experience with machine learning using the Python programming languages and Python-based machine learning libraries, this book introduces the mathematical concepts behind machine learning algorithms, which is essential for using machine learning successfully. Thus, this book is different from a purely practical book; it is a book that discusses the necessary details regarding machine learning con
### 回答1: Python是一种功能强大的编程语言,广泛用于概率、统计和机器学习领域。 首先,Python拥有丰富的概率计算库,如NumPy和SciPy,可以处理复杂的概率计算和统计分析。这些库提供了很多常用的函数和方法,包括概率密度函数、累积分布函数、随机数生成和统计方法。而且,Python还有很多其他的库,如pandas和matplotlib,可以处理和可视化概率和统计数据。 其次,Python在统计建模方面也非常有用。库如statsmodels和scikit-learn提供了广泛的统计分析工具,包括线性回归、逻辑回归、时间序列分析和贝叶斯模型等。这些库不仅提供了统计方法的实现,还提供了模型评估和结果解释的功能,可以帮助研究者和数据科学家进行复杂的统计分析。 最后,Python机器学习领域具有广泛的应用。机器学习算法如决策树、支持向量机、神经网络等在Python中有丰富的实现,主要通过scikit-learn和TensorFlow等库提供。这些库不仅提供了机器学习算法的实现,还提供了数据预处理、特征选择、模型评估和交叉验证等功能,帮助用户进行全面的机器学习工作流程。 综上所述,Python在概率、统计和机器学习领域非常有用,其丰富的库和工具使得用户能够进行复杂的概率计算、统计分析和机器学习模型的建立和评估。无论是学术研究还是实践应用,Python都是一种非常适用的编程语言。 ### 回答2: Python是一种广泛应用于概率、统计和机器学习领域的编程语言。它具有丰富的库和模块,可以帮助研究人员和数据科学家在这些领域进行分析和建模。 对于概率和统计来说,Python提供了很多强大的库,如NumPy、SciPy和pandas。NumPy提供了高性能的数值计算能力,尤其适合处理大规模数据集。SciPy则包含了很多常用的统计函数和算法,如概率分布、假设检验和回归分析等。pandas则是一个数据处理和分析的利器,可以轻松处理和转换数据,进行统计计算和绘图。 在机器学习方面,Python也成为了最流行的语言之一。有一些非常有用的机器学习库,如scikit-learn和TensorFlow。scikit-learn提供了大量的机器学习算法和工具,包括分类、回归、聚类和降维等。TensorFlow则是一个开源的深度学习框架,可以用于构建和训练神经网络模型。 Python的易用性和灵活性使得它成为了许多概率、统计和机器学习研究项目的首选语言。它具有简洁而优雅的语法,便于编写和维护代码。同时,Python具有活跃的社区支持,可以获得丰富的学习资源和工具。 总之,Python在概率、统计和机器学习领域具有重要的地位,人们可以利用Python丰富的库和模块来进行高效的数据分析、建模和机器学习任务。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值