刷题计划_Day8

Day 8

733. 图像渲染

有一幅以 m x n 的二维整数数组表示的图画 image ,其中 image[i][j] 表示该图画的像素值大小。

你也被给予三个整数 sr , sc 和 newColor 。你应该从像素 image[sr][sc] 开始对图像进行 上色填充 。

为了完成 上色工作 ,从初始像素开始,记录初始坐标的 上下左右四个方向上 像素值与初始坐标相同的相连像素点,接着再记录这四个方向上符合条件的像素点与他们对应 四个方向上 像素值与初始坐标相同的相连像素点,……,重复该过程。将所有有记录的像素点的颜色值改为 newColor 。

最后返回 经过上色渲染后的图像 。

img

利用深度优先算法,对上下左右等于color的元素进行 染色,并且递归地调用 dfs 对其上下左右的元素进行判断

class Solution {
public:
    const int dx[4] = {1, 0, 0, -1};
    const int dy[4] = {0, 1, -1, 0};
    void dfs(vector<vector<int>>& image, int x, int y, int color, int newColor) {
        if (image[x][y] == color) {
            image[x][y] = newColor;
            for (int i = 0; i < 4; i++) {
                int mx = x + dx[i], my = y + dy[i];
                if (mx >= 0 && mx < image.size() && my >= 0 && my < image[0].size()) {
                    dfs(image, mx, my, color, newColor);
                }
            }
        }
    }

    vector<vector<int>> floodFill(vector<vector<int>>& image, int sr, int sc, int newColor) {
        int currColor = image[sr][sc];
        if (currColor != newColor) {
            dfs(image, sr, sc, currColor, newColor);
        }
        return image;
    }
};	

695. 岛屿的最大面积

给你一个大小为 m x n 的二进制矩阵 grid 。

岛屿 是由一些相邻的 1 (代表土地) 构成的组合,这里的「相邻」要求两个 1 必须在 水平或者竖直的四个方向上 相邻。你可以假设 grid 的四个边缘都被 0(代表水)包围着。

岛屿的面积是岛上值为 1 的单元格的数目。

计算并返回 grid 中最大的岛屿面积。如果没有岛屿,则返回面积为 0 。

img

对 m * n个元素遍历执行,得到的 ans 和原来的 ans 进行 max 比较,取较大的数

class Solution {
public:
    int dfs(vector<vector<int>>& grid, int cur_i, int cur_j) {
        if (cur_i < 0 || cur_j < 0 || cur_i == grid.size() || cur_j == grid[0].size() || grid[cur_i][cur_j] != 1) {
            return 0;
        }
        grid[cur_i][cur_j] = 0;
        int di[4] = {0, 0, 1, -1};
        int dj[4] = {1, -1, 0, 0};
        int ans = 1;
        for (int index = 0; index != 4; ++index) {
            int next_i = cur_i + di[index], next_j = cur_j + dj[index];
            ans += dfs(grid, next_i, next_j);
        }
        return ans;
    }

    int maxAreaOfIsland(vector<vector<int>>& grid) {
        int ans = 0;
        for (int i = 0; i != grid.size(); ++i) {
            for (int j = 0; j != grid[0].size(); ++j) {	
                ans = max(ans, dfs(grid, i, j));
            }
        }
        return ans;
    }
};

617. 合并二叉树

给你两棵二叉树: root1 和 root2 。

想象一下,当你将其中一棵覆盖到另一棵之上时,两棵树上的一些节点将会重叠(而另一些不会)。你需要将这两棵树合并成一棵新二叉树。合并的规则是:如果两个节点重叠,那么将这两个节点的值相加作为合并后节点的新值;否则,不为 null 的节点将直接作为新二叉树的节点。

返回合并后的二叉树。

注意: 合并过程必须从两个树的根节点开始。

auto 一个 新树,新树的值为 两个树 的值之和,然后再递归地构造 左右子树

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */


class Solution {
public:
    TreeNode* mergeTrees(TreeNode* root1, TreeNode* root2) {
        if(root1 == nullptr)
        {
            return root2;
        }
        if(root2 == nullptr)
        {
            return root1;
        }
        auto ans = new TreeNode(root1->val+root2->val);
        cout << "root1:" << root1->val << "root2:" << root2->val << endl;
        cout << ans->val << endl;
        ans->left = mergeTrees(root1->left,root2->left);
        ans->right = mergeTrees(root1->right,root2->right);
        return ans;
    }
};

116. 填充每个节点的下一个右侧节点指针

给定一个 完美二叉树 ,其所有叶子节点都在同一层,每个父节点都有两个子节点。二叉树定义如下:

struct Node {
int val;
Node *left;
Node *right;
Node *next;
}

填充它的每个 next 指针,让这个指针指向其下一个右侧节点。如果找不到下一个右侧节点,则将 next 指针设置为 NULL。

初始状态下,所有 next 指针都被设置为 NULL。

用 leftmost 表示左边最深的结点,一直往左走,如果 head->next 存在,说明 head 是左节点 ,就执行 head->right->next = head->next->left,如果不存在即 head 为右节点,执行 head->left->next = head->right,一个结点的next 默认都是 null,所以最右边结点无需操作

/*
// Definition for a Node.
class Node {
public:
    int val;
    Node* left;
    Node* right;
    Node* next;

    Node() : val(0), left(NULL), right(NULL), next(NULL) {}

    Node(int _val) : val(_val), left(NULL), right(NULL), next(NULL) {}

    Node(int _val, Node* _left, Node* _right, Node* _next)
        : val(_val), left(_left), right(_right), next(_next) {}
};
*/

class Solution {
public:
    Node* connect(Node* root) {
        if(root==nullptr)
        {
            return root;
        }

        Node* leftmost = root;

        while(leftmost->left!=nullptr)
        {
            Node*head = leftmost;
            while(head!=nullptr)
            {
                head->left->next = head->right;
                if(head->next!=nullptr)
                {
                    head->right->next = head->next->left;
                }

                head = head->next;
            }
            leftmost = leftmost->left;
        }
        return root;
    }
};

542. 01 矩阵

给定一个由 0 和 1 组成的矩阵 mat ,请输出一个大小相同的矩阵,其中每一个格子是 mat 中对应位置元素到最近的 0 的距离。

两个相邻元素间的距离为 1 。

class Solution {
private:
    static constexpr int dirs[4][2] = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};

public:
    vector<vector<int>> updateMatrix(vector<vector<int>>& matrix) {
        int m = matrix.size(), n = matrix[0].size();
        vector<vector<int>> dist(m, vector<int>(n));
        vector<vector<int>> seen(m, vector<int>(n));
        queue<pair<int, int>> q;
        // 将所有的 0 添加进初始队列中
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                if (matrix[i][j] == 0) {
                    q.emplace(i, j);
                    seen[i][j] = 1;
                }
            }
        }

        // 广度优先搜索
        while (!q.empty()) {
            auto [i, j] = q.front();
            q.pop();
            for (int d = 0; d < 4; ++d) {
                int ni = i + dirs[d][0];
                int nj = j + dirs[d][1];
                if (ni >= 0 && ni < m && nj >= 0 && nj < n && !seen[ni][nj]) {
                    dist[ni][nj] = dist[i][j] + 1;
                    q.emplace(ni, nj);
                    seen[ni][nj] = 1;
                }
            }
        }

        return dist;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值