这是arduinohtpclient库中的HttpClient.cpp的内容// Class to simplify HTTP fetching on Arduino
// (c) Copyright 2010-2011 MCQN Ltd
// Released under Apache License, version 2.0
#include "HttpClient.h"
#include "b64.h"
// Initialize constants
const char* HttpClient::kUserAgent = "Arduino/2.2.0";
const char* HttpClient::kContentLengthPrefix = HTTP_HEADER_CONTENT_LENGTH ": ";
const char* HttpClient::kTransferEncodingChunked = HTTP_HEADER_TRANSFER_ENCODING ": " HTTP_HEADER_VALUE_CHUNKED;
HttpClient::HttpClient(Client& aClient, const char* aServerName, uint16_t aServerPort)
: iClient(&aClient), iServerName(aServerName), iServerAddress(), iServerPort(aServerPort),
iConnectionClose(true), iSendDefaultRequestHeaders(true)
{
resetState();
}
HttpClient::HttpClient(Client& aClient, const String& aServerName, uint16_t aServerPort)
: HttpClient(aClient, aServerName.c_str(), aServerPort)
{
}
HttpClient::HttpClient(Client& aClient, const IPAddress& aServerAddress, uint16_t aServerPort)
: iClient(&aClient), iServerName(NULL), iServerAddress(aServerAddress), iServerPort(aServerPort),
iConnectionClose(true), iSendDefaultRequestHeaders(true)
{
resetState();
}
void HttpClient::resetState()
{
iState = eIdle;
iStatusCode = 0;
iContentLength = kNoContentLengthHeader;
iBodyLengthConsumed = 0;
iContentLengthPtr = kContentLengthPrefix;
iTransferEncodingChunkedPtr = kTransferEncodingChunked;
iIsChunked = false;
iChunkLength = 0;
iHttpResponseTimeout = kHttpResponseTimeout;
iHttpWaitForDataDelay = kHttpWaitForDataDelay;
}
void HttpClient::stop()
{
iClient->stop();
resetState();
}
void HttpClient::connectionKeepAlive()
{
iConnectionClose = false;
}
void HttpClient::noDefaultRequestHeaders()
{
iSendDefaultRequestHeaders = false;
}
void HttpClient::beginRequest()
{
iState = eRequestStarted;
}
int HttpClient::startRequest(const char* aURLPath, const char* aHttpMethod,
const char* aContentType, int aContentLength, const byte aBody[])
{
if (iState == eReadingBody || iState == eReadingChunkLength || iState == eReadingBodyChunk)
{
flushClientRx();
resetState();
}
tHttpState initialState = iState;
if ((eIdle != iState) && (eRequestStarted != iState))
{
return HTTP_ERROR_API;
}
if (iConnectionClose || !iClient->connected())
{
if (iServerName)
{
if (!(iClient->connect(iServerName, iServerPort) > 0))
{
#ifdef LOGGING
Serial.println("Connection failed");
#endif
return HTTP_ERROR_CONNECTION_FAILED;
}
}
else
{
if (!(iClient->connect(iServerAddress, iServerPort) > 0))
{
#ifdef LOGGING
Serial.println("Connection failed");
#endif
return HTTP_ERROR_CONNECTION_FAILED;
}
}
}
else
{
#ifdef LOGGING
Serial.println("Connection already open");
#endif
}
// Now we're connected, send the first part of the request
int ret = sendInitialHeaders(aURLPath, aHttpMethod);
if (HTTP_SUCCESS == ret)
{
if (aContentType)
{
sendHeader(HTTP_HEADER_CONTENT_TYPE, aContentType);
}
if (aContentLength > 0)
{
sendHeader(HTTP_HEADER_CONTENT_LENGTH, aContentLength);
}
bool hasBody = (aBody && aContentLength > 0);
if (initialState == eIdle || hasBody)
{
// This was a simple version of the API, so terminate the headers now
finishHeaders();
}
// else we'll call it in endRequest or in the first call to print, etc.
if (hasBody)
{
write(aBody, aContentLength);
}
}
return ret;
}
int HttpClient::sendInitialHeaders(const char* aURLPath, const char* aHttpMethod)
{
#ifdef LOGGING
Serial.println("Connected");
#endif
// Send the HTTP command, i.e. "GET /somepath/ HTTP/1.0"
iClient->print(aHttpMethod);
iClient->print(" ");
iClient->print(aURLPath);
iClient->println(" HTTP/1.1");
if (iSendDefaultRequestHeaders)
{
// The host header, if required
if (iServerName)
{
iClient->print("Host: ");
iClient->print(iServerName);
if (iServerPort != kHttpPort && iServerPort != kHttpsPort)
{
iClient->print(":");
iClient->print(iServerPort);
}
iClient->println();
}
// And user-agent string
sendHeader(HTTP_HEADER_USER_AGENT, kUserAgent);
}
if (iConnectionClose)
{
// Tell the server to
// close this connection after we're done
sendHeader(HTTP_HEADER_CONNECTION, "close");
}
// Everything has gone well
iState = eRequestStarted;
return HTTP_SUCCESS;
}
void HttpClient::sendHeader(const char* aHeader)
{
iClient->println(aHeader);
}
void HttpClient::sendHeader(const char* aHeaderName, const char* aHeaderValue)
{
iClient->print(aHeaderName);
iClient->print(": ");
iClient->println(aHeaderValue);
}
void HttpClient::sendHeader(const char* aHeaderName, const int aHeaderValue)
{
iClient->print(aHeaderName);
iClient->print(": ");
iClient->println(aHeaderValue);
}
void HttpClient::sendBasicAuth(const char* aUser, const char* aPassword)
{
// Send the initial part of this header line
iClient->print("Authorization: Basic ");
// Now Base64 encode "aUser:aPassword" and send that
// This seems trickier than it should be but it's mostly to avoid either
// (a) some arbitrarily sized buffer which hopes to be big enough, or
// (b) allocating and freeing memory
// ...so we'll loop through 3 bytes at a time, outputting the results as we
// go.
// In Base64, each 3 bytes of unencoded data become 4 bytes of encoded data
unsigned char input[3];
unsigned char output[5]; // Leave space for a '\0' terminator so we can easily print
int userLen = strlen(aUser);
int passwordLen = strlen(aPassword);
int inputOffset = 0;
for (int i = 0; i < (userLen+1+passwordLen); i++)
{
// Copy the relevant input byte into the input
if (i < userLen)
{
input[inputOffset++] = aUser[i];
}
else if (i == userLen)
{
input[inputOffset++] = ':';
}
else
{
input[inputOffset++] = aPassword[i-(userLen+1)];
}
// See if we've got a chunk to encode
if ( (inputOffset == 3) || (i == userLen+passwordLen) )
{
// We've either got to a 3-byte boundary, or we've reached then end
b64_encode(input, inputOffset, output, 4);
// NUL-terminate the output string
output[4] = '\0';
// And write it out
iClient->print((char*)output);
// FIXME We might want to fill output with '=' characters if b64_encode doesn't
// FIXME do it for us when we're encoding the final chunk
inputOffset = 0;
}
}
// And end the header we've sent
iClient->println();
}
void HttpClient::finishHeaders()
{
iClient->println();
iState = eRequestSent;
}
void HttpClient::flushClientRx()
{
while (iClient->available())
{
iClient->read();
}
}
void HttpClient::endRequest()
{
beginBody();
}
void HttpClient::beginBody()
{
if (iState < eRequestSent)
{
// We still need to finish off the headers
finishHeaders();
}
// else the end of headers has already been sent, so nothing to do here
}
int HttpClient::get(const char* aURLPath)
{
return startRequest(aURLPath, HTTP_METHOD_GET);
}
int HttpClient::get(const String& aURLPath)
{
return get(aURLPath.c_str());
}
int HttpClient::post(const char* aURLPath)
{
return startRequest(aURLPath, HTTP_METHOD_POST);
}
int HttpClient::post(const String& aURLPath)
{
return post(aURLPath.c_str());
}
int HttpClient::post(const char* aURLPath, const char* aContentType, const char* aBody)
{
return post(aURLPath, aContentType, strlen(aBody), (const byte*)aBody);
}
int HttpClient::post(const String& aURLPath, const String& aContentType, const String& aBody)
{
return post(aURLPath.c_str(), aContentType.c_str(), aBody.length(), (const byte*)aBody.c_str());
}
int HttpClient::post(const char* aURLPath, const char* aContentType, int aContentLength, const byte aBody[])
{
return startRequest(aURLPath, HTTP_METHOD_POST, aContentType, aContentLength, aBody);
}
int HttpClient::put(const char* aURLPath)
{
return startRequest(aURLPath, HTTP_METHOD_PUT);
}
int HttpClient::put(const String& aURLPath)
{
return put(aURLPath.c_str());
}
int HttpClient::put(const char* aURLPath, const char* aContentType, const char* aBody)
{
return put(aURLPath, aContentType, strlen(aBody), (const byte*)aBody);
}
int HttpClient::put(const String& aURLPath, const String& aContentType, const String& aBody)
{
return put(aURLPath.c_str(), aContentType.c_str(), aBody.length(), (const byte*)aBody.c_str());
}
int HttpClient::put(const char* aURLPath, const char* aContentType, int aContentLength, const byte aBody[])
{
return startRequest(aURLPath, HTTP_METHOD_PUT, aContentType, aContentLength, aBody);
}
int HttpClient::patch(const char* aURLPath)
{
return startRequest(aURLPath, HTTP_METHOD_PATCH);
}
int HttpClient::patch(const String& aURLPath)
{
return patch(aURLPath.c_str());
}
int HttpClient::patch(const char* aURLPath, const char* aContentType, const char* aBody)
{
return patch(aURLPath, aContentType, strlen(aBody), (const byte*)aBody);
}
int HttpClient::patch(const String& aURLPath, const String& aContentType, const String& aBody)
{
return patch(aURLPath.c_str(), aContentType.c_str(), aBody.length(), (const byte*)aBody.c_str());
}
int HttpClient::patch(const char* aURLPath, const char* aContentType, int aContentLength, const byte aBody[])
{
return startRequest(aURLPath, HTTP_METHOD_PATCH, aContentType, aContentLength, aBody);
}
int HttpClient::del(const char* aURLPath)
{
return startRequest(aURLPath, HTTP_METHOD_DELETE);
}
int HttpClient::del(const String& aURLPath)
{
return del(aURLPath.c_str());
}
int HttpClient::del(const char* aURLPath, const char* aContentType, const char* aBody)
{
return del(aURLPath, aContentType, strlen(aBody), (const byte*)aBody);
}
int HttpClient::del(const String& aURLPath, const String& aContentType, const String& aBody)
{
return del(aURLPath.c_str(), aContentType.c_str(), aBody.length(), (const byte*)aBody.c_str());
}
int HttpClient::del(const char* aURLPath, const char* aContentType, int aContentLength, const byte aBody[])
{
return startRequest(aURLPath, HTTP_METHOD_DELETE, aContentType, aContentLength, aBody);
}
int HttpClient::responseStatusCode()
{
if (iState < eRequestSent)
{
return HTTP_ERROR_API;
}
// The first line will be of the form Status-Line:
// HTTP-Version SP Status-Code SP Reason-Phrase CRLF
// Where HTTP-Version is of the form:
// HTTP-Version = "HTTP" "/" 1*DIGIT "." 1*DIGIT
int c = '\0';
do
{
// Make sure the status code is reset, and likewise the state. This
// lets us easily cope with 1xx informational responses by just
// ignoring them really, and reading the next line for a proper response
iStatusCode = 0;
iState = eRequestSent;
unsigned long timeoutStart = millis();
// Psuedo-regexp we're expecting before the status-code
const char* statusPrefix = "HTTP/*.* ";
const char* statusPtr = statusPrefix;
// Whilst we haven't timed out & haven't reached the end of the headers
while ((c != '\n') &&
( (millis() - timeoutStart) < iHttpResponseTimeout ))
{
if (available())
{
c = HttpClient::read();
if (c != -1)
{
switch(iState)
{
case eRequestSent:
// We haven't reached the status code yet
if ( (*statusPtr == '*') || (*statusPtr == c) )
{
// This character matches, just move along
statusPtr++;
if (*statusPtr == '\0')
{
// We've reached the end of the prefix
iState = eReadingStatusCode;
}
}
else
{
return HTTP_ERROR_INVALID_RESPONSE;
}
break;
case eReadingStatusCode:
if (isdigit(c))
{
// This assumes we won't get more than the 3 digits we
// want
iStatusCode = iStatusCode*10 + (c - '0');
}
else
{
// We've reached the end of the status code
// We could sanity check it here or double-check for ' '
// rather than anything else, but let's be lenient
iState = eStatusCodeRead;
}
break;
case eStatusCodeRead:
// We're just waiting for the end of the line now
break;
default:
break;
};
// We read something, reset the timeout counter
timeoutStart = millis();
}
}
else
{
// We haven't got any data, so let's pause to allow some to
// arrive
delay(iHttpWaitForDataDelay);
}
}
if ( (c == '\n') && (iStatusCode < 200 && iStatusCode != 101) )
{
// We've reached the end of an informational status line
c = '\0'; // Clear c so we'll go back into the data reading loop
}
}
// If we've read a status code successfully but it's informational (1xx)
// loop back to the start
while ( (iState == eStatusCodeRead) && (iStatusCode < 200 && iStatusCode != 101) );
if ( (c == '\n') && (iState == eStatusCodeRead) )
{
// We've read the status-line successfully
return iStatusCode;
}
else if (c != '\n')
{
// We must've timed out before we reached the end of the line
return HTTP_ERROR_TIMED_OUT;
}
else
{
// This wasn't a properly formed status line, or at least not one we
// could understand
return HTTP_ERROR_INVALID_RESPONSE;
}
}
int HttpClient::skipResponseHeaders()
{
// Just keep reading until we finish reading the headers or time out
unsigned long timeoutStart = millis();
// Whilst we haven't timed out & haven't reached the end of the headers
while ((!endOfHeadersReached()) &&
( (millis() - timeoutStart) < iHttpResponseTimeout ))
{
if (available())
{
(void)readHeader();
// We read something, reset the timeout counter
timeoutStart = millis();
}
else
{
// We haven't got any data, so let's pause to allow some to
// arrive
delay(iHttpWaitForDataDelay);
}
}
if (endOfHeadersReached())
{
// Success
return HTTP_SUCCESS;
}
else
{
// We must've timed out
return HTTP_ERROR_TIMED_OUT;
}
}
bool HttpClient::endOfHeadersReached()
{
return (iState == eReadingBody || iState == eReadingChunkLength || iState == eReadingBodyChunk);
};
long HttpClient::contentLength()
{
// skip the response headers, if they haven't been read already
if (!endOfHeadersReached())
{
skipResponseHeaders();
}
return iContentLength;
}
String HttpClient::responseBody()
{
int bodyLength = contentLength();
String response;
if (bodyLength > 0)
{
// try to reserve bodyLength bytes
if (response.reserve(bodyLength) == 0) {
// String reserve failed
return String((const char*)NULL);
}
}
// keep on timedRead'ing, until:
// - we have a content length: body length equals consumed or no bytes
// available
// - no content length: no bytes are available
while (iBodyLengthConsumed != bodyLength)
{
int c = timedRead();
if (c == -1) {
// read timed out, done
break;
}
if (!response.concat((char)c)) {
// adding char failed
return String((const char*)NULL);
}
}
if (bodyLength > 0 && (unsigned int)bodyLength != response.length()) {
// failure, we did not read in response content length bytes
return String((const char*)NULL);
}
return response;
}
bool HttpClient::endOfBodyReached()
{
if (endOfHeadersReached() && (contentLength() != kNoContentLengthHeader))
{
// We've got to the body and we know how long it will be
return (iBodyLengthConsumed >= contentLength());
}
return false;
}
int HttpClient::available()
{
if (iState == eReadingChunkLength)
{
while (iClient->available())
{
char c = iClient->read();
if (c == '\n')
{
iState = eReadingBodyChunk;
break;
}
else if (c == '\r')
{
// no-op
}
else if (isHexadecimalDigit(c))
{
char digit[2] = {c, '\0'};
iChunkLength = (iChunkLength * 16) + strtol(digit, NULL, 16);
}
}
}
if (iState == eReadingBodyChunk && iChunkLength == 0)
{
iState = eReadingChunkLength;
}
if (iState == eReadingChunkLength)
{
return 0;
}
int clientAvailable = iClient->available();
if (iState == eReadingBodyChunk)
{
return min(clientAvailable, iChunkLength);
}
else
{
return clientAvailable;
}
}
int HttpClient::read()
{
if (iIsChunked && !available())
{
return -1;
}
int ret = iClient->read();
if (ret >= 0)
{
if (endOfHeadersReached() && iContentLength > 0)
{
// We're outputting the body now and we've seen a Content-Length header
// So keep track of how many bytes are left
iBodyLengthConsumed++;
}
if (iState == eReadingBodyChunk)
{
iChunkLength--;
if (iChunkLength == 0)
{
iState = eReadingChunkLength;
}
}
}
return ret;
}
bool HttpClient::headerAvailable()
{
// clear the currently stored header line
iHeaderLine = "";
while (!endOfHeadersReached())
{
// read a byte from the header
int c = readHeader();
if (c == '\r' || c == '\n')
{
if (iHeaderLine.length())
{
// end of the line, all done
break;
}
else
{
// ignore any CR or LF characters
continue;
}
}
// append byte to header line
iHeaderLine += (char)c;
}
return (iHeaderLine.length() > 0);
}
String HttpClient::readHeaderName()
{
int colonIndex = iHeaderLine.indexOf(':');
if (colonIndex == -1)
{
return "";
}
return iHeaderLine.substring(0, colonIndex);
}
String HttpClient::readHeaderValue()
{
int colonIndex = iHeaderLine.indexOf(':');
int startIndex = colonIndex + 1;
if (colonIndex == -1)
{
return "";
}
// trim any leading whitespace
while (startIndex < (int)iHeaderLine.length() && isSpace(iHeaderLine[startIndex]))
{
startIndex++;
}
return iHeaderLine.substring(startIndex);
}
int HttpClient::read(uint8_t *buf, size_t size)
{
int ret =iClient->read(buf, size);
if (endOfHeadersReached() && iContentLength > 0)
{
// We're outputting the body now and we've seen a Content-Length header
// So keep track of how many bytes are left
if (ret >= 0)
{
iBodyLengthConsumed += ret;
}
}
return ret;
}
int HttpClient::readHeader()
{
char c = HttpClient::read();
if (endOfHeadersReached())
{
// We've passed the headers, but rather than return an error, we'll just
// act as a slightly less efficient version of read()
return c;
}
// Whilst reading out the headers to whoever wants them, we'll keep an
// eye out for the "Content-Length" header
switch(iState)
{
case eStatusCodeRead:
// We're at the start of a line, or somewhere in the middle of reading
// the Content-Length prefix
if (*iContentLengthPtr == c)
{
// This character matches, just move along
iContentLengthPtr++;
if (*iContentLengthPtr == '\0')
{
// We've reached the end of the prefix
iState = eReadingContentLength;
// Just in case we get multiple Content-Length headers, this
// will ensure we just get the value of the last one
iContentLength = 0;
iBodyLengthConsumed = 0;
}
}
else if (*iTransferEncodingChunkedPtr == c)
{
// This character matches, just move along
iTransferEncodingChunkedPtr++;
if (*iTransferEncodingChunkedPtr == '\0')
{
// We've reached the end of the Transfer Encoding: chunked header
iIsChunked = true;
iState = eSkipToEndOfHeader;
}
}
else if (((iContentLengthPtr == kContentLengthPrefix) && (iTransferEncodingChunkedPtr == kTransferEncodingChunked)) && (c == '\r'))
{
// We've found a '\r' at the start of a line, so this is probably
// the end of the headers
iState = eLineStartingCRFound;
}
else
{
// This isn't the Content-Length or Transfer Encoding chunked header, skip to the end of the line
iState = eSkipToEndOfHeader;
}
break;
case eReadingContentLength:
if (isdigit(c))
{
long _iContentLength = iContentLength*10 + (c - '0');
// Only apply if the value didn't wrap around
if (_iContentLength > iContentLength) {
iContentLength = _iContentLength;
}
}
else
{
// We've reached the end of the content length
// We could sanity check it here or double-check for "\r\n"
// rather than anything else, but let's be lenient
iState = eSkipToEndOfHeader;
}
break;
case eLineStartingCRFound:
if (c == '\n')
{
if (iIsChunked)
{
iState = eReadingChunkLength;
iChunkLength = 0;
}
else
{
iState = eReadingBody;
}
}
break;
default:
// We're just waiting for the end of the line now
break;
};
if ( (c == '\n') && !endOfHeadersReached() )
{
// We've got to the end of this line, start processing again
iState = eStatusCodeRead;
iContentLengthPtr = kContentLengthPrefix;
iTransferEncodingChunkedPtr = kTransferEncodingChunked;
}
// And return the character read to whoever wants it
return c;
}
这是HttpClient.h头文件的内容// Class to simplify HTTP fetching on Arduino
// (c) Copyright MCQN Ltd. 2010-2012
// Released under Apache License, version 2.0
#ifndef HttpClient_h
#define HttpClient_h
#include <Arduino.h>
#include <IPAddress.h>
#include "Client.h"
static const int HTTP_SUCCESS =0;
// The end of the headers has been reached. This consumes the '\n'
// Could not connect to the server
static const int HTTP_ERROR_CONNECTION_FAILED =-1;
// This call was made when the HttpClient class wasn't expecting it
// to be called. Usually indicates your code is using the class
// incorrectly
static const int HTTP_ERROR_API =-2;
// Spent too long waiting for a reply
static const int HTTP_ERROR_TIMED_OUT =-3;
// The response from the server is invalid, is it definitely an HTTP
// server?
static const int HTTP_ERROR_INVALID_RESPONSE =-4;
// Define some of the common methods and headers here
// That lets other code reuse them without having to declare another copy
// of them, so saves code space and RAM
#define HTTP_METHOD_GET "GET"
#define HTTP_METHOD_POST "POST"
#define HTTP_METHOD_PUT "PUT"
#define HTTP_METHOD_PATCH "PATCH"
#define HTTP_METHOD_DELETE "DELETE"
#define HTTP_HEADER_CONTENT_LENGTH "Content-Length"
#define HTTP_HEADER_CONTENT_TYPE "Content-Type"
#define HTTP_HEADER_CONNECTION "Connection"
#define HTTP_HEADER_TRANSFER_ENCODING "Transfer-Encoding"
#define HTTP_HEADER_USER_AGENT "User-Agent"
#define HTTP_HEADER_VALUE_CHUNKED "chunked"
class HttpClient : public Client
{
public:
static const int kNoContentLengthHeader =-1;
static const int kHttpPort =80;
static const int kHttpsPort =443;
static const char* kUserAgent;
// FIXME Write longer API request, using port and user-agent, example
// FIXME Update tempToPachube example to calculate Content-Length correctly
HttpClient(Client& aClient, const char* aServerName, uint16_t aServerPort = kHttpPort);
HttpClient(Client& aClient, const String& aServerName, uint16_t aServerPort = kHttpPort);
HttpClient(Client& aClient, const IPAddress& aServerAddress, uint16_t aServerPort = kHttpPort);
/** Start a more complex request.
Use this when you need to send additional headers in the request,
but you will also need to call endRequest() when you are finished.
*/
void beginRequest();
/** End a more complex request.
Use this when you need to have sent additional headers in the request,
but you will also need to call beginRequest() at the start.
*/
void endRequest();
/** Start the body of a more complex request.
Use this when you need to send the body after additional headers
in the request, but can optionally call endRequest() when
you are finished.
*/
void beginBody();
/** Connect to the server and start to send a GET request.
@param aURLPath Url to request
@return 0 if successful, else error
*/
int get(const char* aURLPath);
int get(const String& aURLPath);
/** Connect to the server and start to send a POST request.
@param aURLPath Url to request
@return 0 if successful, else error
*/
int post(const char* aURLPath);
int post(const String& aURLPath);
/** Connect to the server and send a POST request
with body and content type
@param aURLPath Url to request
@param aContentType Content type of request body
@param aBody Body of the request
@return 0 if successful, else error
*/
int post(const char* aURLPath, const char* aContentType, const char* aBody);
int post(const String& aURLPath, const String& aContentType, const String& aBody);
int post(const char* aURLPath, const char* aContentType, int aContentLength, const byte aBody[]);
/** Connect to the server and start to send a PUT request.
@param aURLPath Url to request
@return 0 if successful, else error
*/
int put(const char* aURLPath);
int put(const String& aURLPath);
/** Connect to the server and send a PUT request
with body and content type
@param aURLPath Url to request
@param aContentType Content type of request body
@param aBody Body of the request
@return 0 if successful, else error
*/
int put(const char* aURLPath, const char* aContentType, const char* aBody);
int put(const String& aURLPath, const String& aContentType, const String& aBody);
int put(const char* aURLPath, const char* aContentType, int aContentLength, const byte aBody[]);
/** Connect to the server and start to send a PATCH request.
@param aURLPath Url to request
@return 0 if successful, else error
*/
int patch(const char* aURLPath);
int patch(const String& aURLPath);
/** Connect to the server and send a PATCH request
with body and content type
@param aURLPath Url to request
@param aContentType Content type of request body
@param aBody Body of the request
@return 0 if successful, else error
*/
int patch(const char* aURLPath, const char* aContentType, const char* aBody);
int patch(const String& aURLPath, const String& aContentType, const String& aBody);
int patch(const char* aURLPath, const char* aContentType, int aContentLength, const byte aBody[]);
/** Connect to the server and start to send a DELETE request.
@param aURLPath Url to request
@return 0 if successful, else error
*/
int del(const char* aURLPath);
int del(const String& aURLPath);
/** Connect to the server and send a DELETE request
with body and content type
@param aURLPath Url to request
@param aContentType Content type of request body
@param aBody Body of the request
@return 0 if successful, else error
*/
int del(const char* aURLPath, const char* aContentType, const char* aBody);
int del(const String& aURLPath, const String& aContentType, const String& aBody);
int del(const char* aURLPath, const char* aContentType, int aContentLength, const byte aBody[]);
/** Connect to the server and start to send the request.
If a body is provided, the entire request (including headers and body) will be sent
@param aURLPath Url to request
@param aHttpMethod Type of HTTP request to make, e.g. "GET", "POST", etc.
@param aContentType Content type of request body (optional)
@param aContentLength Length of request body (optional)
@param aBody Body of request (optional)
@return 0 if successful, else error
*/
int startRequest(const char* aURLPath,
const char* aHttpMethod,
const char* aContentType = NULL,
int aContentLength = -1,
const byte aBody[] = NULL);
/** Send an additional header line. This can only be called in between the
calls to beginRequest and endRequest.
@param aHeader Header line to send, in its entirety (but without the
trailing CRLF. E.g. "Authorization: Basic YQDDCAIGES"
*/
void sendHeader(const char* aHeader);
void sendHeader(const String& aHeader)
{ sendHeader(aHeader.c_str()); }
/** Send an additional header line. This is an alternate form of
sendHeader() which takes the header name and content as separate strings.
The call will add the ": " to separate the header, so for example, to
send a XXXXXX header call sendHeader("XXXXX", "Something")
@param aHeaderName Type of header being sent
@param aHeaderValue Value for that header
*/
void sendHeader(const char* aHeaderName, const char* aHeaderValue);
void sendHeader(const String& aHeaderName, const String& aHeaderValue)
{ sendHeader(aHeaderName.c_str(), aHeaderValue.c_str()); }
/** Send an additional header line. This is an alternate form of
sendHeader() which takes the header name and content separately but where
the value is provided as an integer.
The call will add the ": " to separate the header, so for example, to
send a XXXXXX header call sendHeader("XXXXX", 123)
@param aHeaderName Type of header being sent
@param aHeaderValue Value for that header
*/
void sendHeader(const char* aHeaderName, const int aHeaderValue);
void sendHeader(const String& aHeaderName, const int aHeaderValue)
{ sendHeader(aHeaderName.c_str(), aHeaderValue); }
/** Send a basic authentication header. This will encode the given username
and password, and send them in suitable header line for doing Basic
Authentication.
@param aUser Username for the authorization
@param aPassword Password for the user aUser
*/
void sendBasicAuth(const char* aUser, const char* aPassword);
void sendBasicAuth(const String& aUser, const String& aPassword)
{ sendBasicAuth(aUser.c_str(), aPassword.c_str()); }
/** Get the HTTP status code contained in the response.
For example, 200 for successful request, 404 for file not found, etc.
*/
int responseStatusCode();
/** Check if a header is available to be read.
Use readHeaderName() to read header name, and readHeaderValue() to
read the header value
MUST be called after responseStatusCode() and before contentLength()
*/
bool headerAvailable();
/** Read the name of the current response header.
Returns empty string if a header is not available.
*/
String readHeaderName();
/** Read the value of the current response header.
Returns empty string if a header is not available.
*/
String readHeaderValue();
/** Read the next character of the response headers.
This functions in the same way as read() but to be used when reading
through the headers. Check whether or not the end of the headers has
been reached by calling endOfHeadersReached(), although after that point
this will still return data as read() would, but slightly less efficiently
MUST be called after responseStatusCode() and before contentLength()
@return The next character of the response headers
*/
int readHeader();
/** Skip any response headers to get to the body.
Use this if you don't want to do any special processing of the headers
returned in the response. You can also use it after you've found all of
the headers you're interested in, and just want to get on with processing
the body.
MUST be called after responseStatusCode()
@return HTTP_SUCCESS if successful, else an error code
*/
int skipResponseHeaders();
/** Test whether all of the response headers have been consumed.
@return true if we are now processing the response body, else false
*/
bool endOfHeadersReached();
/** Test whether the end of the body has been reached.
Only works if the Content-Length header was returned by the server
@return true if we are now at the end of the body, else false
*/
bool endOfBodyReached();
virtual bool endOfStream() { return endOfBodyReached(); };
virtual bool completed() { return endOfBodyReached(); };
/** Return the length of the body.
Also skips response headers if they have not been read already
MUST be called after responseStatusCode()
@return Length of the body, in bytes, or kNoContentLengthHeader if no
Content-Length header was returned by the server
*/
long contentLength();
/** Returns if the response body is chunked
@return true if response body is chunked, false otherwise
*/
int isResponseChunked() { return iIsChunked; }
/** Return the response body as a String
Also skips response headers if they have not been read already
MUST be called after responseStatusCode()
@return response body of request as a String
*/
String responseBody();
/** Enables connection keep-alive mode
*/
void connectionKeepAlive();
/** Disables sending the default request headers (Host and User Agent)
*/
void noDefaultRequestHeaders();
// Inherited from Print
// Note: 1st call to these indicates the user is sending the body, so if need
// Note: be we should finish the header first
virtual size_t write(uint8_t aByte) { if (iState < eRequestSent) { finishHeaders(); }; return iClient-> write(aByte); };
virtual size_t write(const uint8_t *aBuffer, size_t aSize) { if (iState < eRequestSent) { finishHeaders(); }; return iClient->write(aBuffer, aSize); };
// Inherited from Stream
virtual int available();
/** Read the next byte from the server.
@return Byte read or -1 if there are no bytes available.
*/
virtual int read();
virtual int read(uint8_t *buf, size_t size);
virtual int peek() { return iClient->peek(); };
virtual void flush() { iClient->flush(); };
// Inherited from Client
virtual int connect(IPAddress ip, uint16_t port) { return iClient->connect(ip, port); };
virtual int connect(const char *host, uint16_t port) { return iClient->connect(host, port); };
virtual void stop();
virtual uint8_t connected() { return iClient->connected(); };
virtual operator bool() { return bool(iClient); };
virtual uint32_t httpResponseTimeout() { return iHttpResponseTimeout; };
virtual void setHttpResponseTimeout(uint32_t timeout) { iHttpResponseTimeout = timeout; };
virtual uint32_t httpWaitForDataDelay() { return iHttpWaitForDataDelay; };
virtual void setHttpWaitForDataDelay(uint32_t delay) { iHttpWaitForDataDelay = delay; };
protected:
/** Reset internal state data back to the "just initialised" state
*/
void resetState();
/** Send the first part of the request and the initial headers.
@param aURLPath Url to request
@param aHttpMethod Type of HTTP request to make, e.g. "GET", "POST", etc.
@return 0 if successful, else error
*/
int sendInitialHeaders(const char* aURLPath,
const char* aHttpMethod);
/* Let the server know that we've reached the end of the headers
*/
void finishHeaders();
/** Reading any pending data from the client (used in connection keep alive mode)
*/
void flushClientRx();
// Number of milliseconds that we wait each time there isn't any data
// available to be read (during status code and header processing)
static const int kHttpWaitForDataDelay = 100;
// Number of milliseconds that we'll wait in total without receiving any
// data before returning HTTP_ERROR_TIMED_OUT (during status code and header
// processing)
static const int kHttpResponseTimeout = 30*1000;
static const char* kContentLengthPrefix;
static const char* kTransferEncodingChunked;
typedef enum {
eIdle,
eRequestStarted,
eRequestSent,
eReadingStatusCode,
eStatusCodeRead,
eReadingContentLength,
eSkipToEndOfHeader,
eLineStartingCRFound,
eReadingBody,
eReadingChunkLength,
eReadingBodyChunk
} tHttpState;
// Client we're using
Client* iClient;
// Server we are connecting to
const char* iServerName;
IPAddress iServerAddress;
// Port of server we are connecting to
uint16_t iServerPort;
// Current state of the finite-state-machine
tHttpState iState;
// Stores the status code for the response, once known
int iStatusCode;
// Stores the value of the Content-Length header, if present
long iContentLength;
// How many bytes of the response body have been read by the user
int iBodyLengthConsumed;
// How far through a Content-Length header prefix we are
const char* iContentLengthPtr;
// How far through a Transfer-Encoding chunked header we are
const char* iTransferEncodingChunkedPtr;
// Stores if the response body is chunked
bool iIsChunked;
// Stores the value of the current chunk length, if present
int iChunkLength;
uint32_t iHttpResponseTimeout;
uint32_t iHttpWaitForDataDelay;
bool iConnectionClose;
bool iSendDefaultRequestHeaders;
String iHeaderLine;
};
#endif
能否基于https://docs.arduino.cc/libraries/ethernet/#Client%20Class中的EthernetClient帮我仿照实现下所有对应的功能
最新发布