Declaring Attributes of Functions

本文详细介绍了GCC中用于声明函数特性的各种属性关键字,包括noreturn、noinline、always_inline等,这些关键字可以帮助编译器优化函数调用并更仔细地检查代码。此外,还解释了如何使用format和format_arg属性来确保格式化字符串的安全性。

In GNU C, you declare certain things about functions called in your program which help the compiler optimize function calls and check your code more carefully.

The keyword __attribute__ allows you to specify special attributes when making a declaration. This keyword is followed by an attribute specification inside double parentheses. The following attributes are currently defined for functions on all targets: noreturnnoinlinealways_inlinepureconstformat,format_argno_instrument_functionsectionconstructordestructorusedunuseddeprecatedweakmalloc, and alias. Several other attributes are defined for functions on particular target systems. Other attributes, including section are supported for variables declarations (see Variable Attributes) and for types (see Type Attributes).

You may also specify attributes with __ preceding and following each keyword. This allows you to use them in header files without being concerned about a possible macro of the same name. For example, you may use __noreturn__ instead of noreturn.

See Attribute Syntax, for details of the exact syntax for using attributes.

noreturn
A few standard library functions, such as abort and exit, cannot return. GCC knows this automatically. Some programs define their own functions that never return. You can declare them noreturn to tell the compiler this fact. For example,
          void fatal () __attribute__ ((noreturn));
          
          void
          fatal (...)
          {
            ... /* Print error message. */ ...
            exit (1);
          }
          

The noreturn keyword tells the compiler to assume that fatal cannot return. It can then optimize without regard to what would happen if fatal ever did return. This makes slightly better code. More importantly, it helps avoid spurious warnings of uninitialized variables.

Do not assume that registers saved by the calling function are restored before calling the noreturn function.

It does not make sense for a noreturn function to have a return type other than void.

The attribute noreturn is not implemented in GCC versions earlier than 2.5. An alternative way to declare that a function does not return, which works in the current version and in some older versions, is as follows:

          typedef void voidfn ();
          
          volatile voidfn fatal;
          

noinline
This function attribute prevents a function from being considered for inlining. 
always_inline
Generally, functions are not inlined unless optimization is specified. For functions declared inline, this attribute inlines the function even if no optimization level was specified. 
pure
Many functions have no effects except the return value and their return value depends only on the parameters and/or global variables. Such a function can be subject to common subexpression elimination and loop optimization just as an arithmetic operator would be. These functions should be declared with the attribute pure. For example,
          int square (int) __attribute__ ((pure));
          

says that the hypothetical function square is safe to call fewer times than the program says.

Some of common examples of pure functions are strlen or memcmp. Interesting non-pure functions are functions with infinite loops or those depending on volatile memory or other system resource, that may change between two consecutive calls (such as feof in a multithreading environment).

The attribute pure is not implemented in GCC versions earlier than 2.96. 

const
Many functions do not examine any values except their arguments, and have no effects except the return value. Basically this is just slightly more strict class than the pure attribute above, since function is not allowed to read global memory.

Note that a function that has pointer arguments and examines the data pointed to must not be declared const. Likewise, a function that calls a non-constfunction usually must not be const. It does not make sense for a const function to return void.

The attribute const is not implemented in GCC versions earlier than 2.5. An alternative way to declare that a function has no side effects, which works in the current version and in some older versions, is as follows:

          typedef int intfn ();
          
          extern const intfn square;
          

This approach does not work in GNU C++ from 2.6.0 on, since the language specifies that the const must be attached to the return value. 

format (archetypestring-indexfirst-to-check)
The format attribute specifies that a function takes printfscanfstrftime or strfmon style arguments which should be type-checked against a format string. For example, the declaration:
          extern int
          my_printf (void *my_object, const char *my_format, ...)
                __attribute__ ((format (printf, 2, 3)));
          

causes the compiler to check the arguments in calls to my_printf for consistency with the printf style format string argument my_format.

The parameter archetype determines how the format string is interpreted, and should be printfscanfstrftime or strfmon. (You can also use __printf__,__scanf____strftime__ or __strfmon__.) The parameter string-index specifies which argument is the format string argument (starting from 1), while first-to-check is the number of the first argument to check against the format string. For functions where the arguments are not available to be checked (such as vprintf), specify the third parameter as zero. In this case the compiler only checks the format string for consistency. For strftime formats, the third parameter is required to be zero.

In the example above, the format string (my_format) is the second argument of the function my_print, and the arguments to check start with the third argument, so the correct parameters for the format attribute are 2 and 3.

The format attribute allows you to identify your own functions which take format strings as arguments, so that GCC can check the calls to these functions for errors. The compiler always (unless -ffreestanding is used) checks formats for the standard library functions printffprintfsprintf,scanffscanfsscanfstrftimevprintfvfprintf and vsprintf whenever such warnings are requested (using -Wformat), so there is no need to modify the header file stdio.h. In C99 mode, the functions snprintfvsnprintfvscanfvfscanf and vsscanf are also checked. Except in strictly conforming C standard modes, the X/Open function strfmon is also checked as are printf_unlocked and fprintf_unlocked. See Options Controlling C Dialect

format_arg (string-index)
The format_arg attribute specifies that a function takes a format string for a printfscanfstrftime or strfmon style function and modifies it (for example, to translate it into another language), so the result can be passed to a printfscanfstrftime or strfmon style function (with the remaining arguments to the format function the same as they would have been for the unmodified string). For example, the declaration:
          extern char *
          my_dgettext (char *my_domain, const char *my_format)
                __attribute__ ((format_arg (2)));
          

causes the compiler to check the arguments in calls to a printfscanfstrftime or strfmon type function, whose format string argument is a call to themy_dgettext function, for consistency with the format string argument my_format. If the format_arg attribute had not been specified, all the compiler could tell in such calls to format functions would be that the format string argument is not constant; this would generate a warning when -Wformat-nonliteral is used, but the calls could not be checked without the attribute.

The parameter string-index specifies which argument is the format string argument (starting from 1).

The format-arg attribute allows you to identify your own functions which modify format strings, so that GCC can check the calls to printfscanfstrftimeor strfmon type function whose operands are a call to one of your own function. The compiler always treats gettextdgettext, and dcgettext in this manner except when strict ISO C support is requested by -ansi or an appropriate -std option, or -ffreestanding is used. See Options Controlling C Dialect

no_instrument_function
If -finstrument-functions is given, profiling function calls will be generated at entry and exit of most user-compiled functions. Functions with this attribute will not be so instrumented. 
section ("section-name")
Normally, the compiler places the code it generates in the text section. Sometimes, however, you need additional sections, or you need certain particular functions to appear in special sections. The section attribute specifies that a function lives in a particular section. For example, the declaration:
          extern void foobar (void) __attribute__ ((section ("bar")));
          

puts the function foobar in the bar section.

Some file formats do not support arbitrary sections so the section attribute is not available on all platforms. If you need to map the entire contents of a module to a particular section, consider using the facilities of the linker instead. 

constructor
destructor
The constructor attribute causes the function to be called automatically before execution enters main (). Similarly, the destructor attribute causes the function to be called automatically after main () has completed or exit () has been called. Functions with these attributes are useful for initializing data that will be used implicitly during the execution of the program.

These attributes are not currently implemented for Objective-C. 

unused
This attribute, attached to a function, means that the function is meant to be possibly unused. GCC will not produce a warning for this function. GNU C++ does not currently support this attribute as definitions without parameters are valid in C++. 
used
This attribute, attached to a function, means that code must be emitted for the function even if it appears that the function is not referenced. This is useful, for example, when the function is referenced only in inline assembly. 
deprecated
The deprecated attribute results in a warning if the function is used anywhere in the source file. This is useful when identifying functions that are expected to be removed in a future version of a program. The warning also includes the location of the declaration of the deprecated function, to enable users to easily find further information about why the function is deprecated, or what they should do instead. Note that the warnings only occurs for uses:
          int old_fn () __attribute__ ((deprecated));
          int old_fn ();
          int (*fn_ptr)() = old_fn;
          

results in a warning on line 3 but not line 2.

The deprecated attribute can also be used for variables and types (see Variable Attributes, see Type Attributes.) 

weak
The weak attribute causes the declaration to be emitted as a weak symbol rather than a global. This is primarily useful in defining library functions which can be overridden in user code, though it can also be used with non-function declarations. Weak symbols are supported for ELF targets, and also for a.out targets when using the GNU assembler and linker. 
malloc
The malloc attribute is used to tell the compiler that a function may be treated as if it were the malloc function. The compiler assumes that calls to malloc result in a pointers that cannot alias anything. This will often improve optimization. 
alias ("target")
The alias attribute causes the declaration to be emitted as an alias for another symbol, which must be specified. For instance,
          void __f () { /* do something */; }
          void f () __attribute__ ((weak, alias ("__f")));
          

declares f to be a weak alias for __f. In C++, the mangled name for the target must be used.

Not all target machines support this attribute. 

regparm (number)
On the Intel 386, the regparm attribute causes the compiler to pass up to number integer arguments in registers EAX, EDX, and ECX instead of on the stack. Functions that take a variable number of arguments will continue to be passed all of their arguments on the stack. 
stdcall
On the Intel 386, the stdcall attribute causes the compiler to assume that the called function will pop off the stack space used to pass arguments, unless it takes a variable number of arguments.

The PowerPC compiler for Windows NT currently ignores the stdcall attribute. 

cdecl
On the Intel 386, the cdecl attribute causes the compiler to assume that the calling function will pop off the stack space used to pass arguments. This is useful to override the effects of the -mrtd switch.

The PowerPC compiler for Windows NT currently ignores the cdecl attribute. 

longcall
On the RS/6000 and PowerPC, the longcall attribute causes the compiler to always call the function via a pointer, so that functions which reside further than 64 megabytes (67,108,864 bytes) from the current location can be called. 
long_call/short_call
This attribute allows to specify how to call a particular function on ARM. Both attributes override the -mlong-calls (see ARM Options) command line switch and #pragma long_calls settings. The long_call attribute causes the compiler to always call the function by first loading its address into a register and then using the contents of that register. The short_call attribute always places the offset to the function from the call site into the BLinstruction directly. 
dllimport
On the PowerPC running Windows NT, the dllimport attribute causes the compiler to call the function via a global pointer to the function pointer that is set up by the Windows NT dll library. The pointer name is formed by combining __imp_ and the function name. 
dllexport
On the PowerPC running Windows NT, the dllexport attribute causes the compiler to provide a global pointer to the function pointer, so that it can be called with the dllimport attribute. The pointer name is formed by combining __imp_ and the function name. 
exception (except-func [, except-arg])
On the PowerPC running Windows NT, the exception attribute causes the compiler to modify the structured exception table entry it emits for the declared function. The string or identifier except-func is placed in the third entry of the structured exception table. It represents a function, which is called by the exception handling mechanism if an exception occurs. If it was specified, the string or identifier except-arg is placed in the fourth entry of the structured exception table. 
function_vector
Use this attribute on the H8/300 and H8/300H to indicate that the specified function should be called through the function vector. Calling a function through the function vector will reduce code size, however; the function vector has a limited size (maximum 128 entries on the H8/300 and 64 entries on the H8/300H) and shares space with the interrupt vector.

You must use GAS and GLD from GNU binutils version 2.7 or later for this attribute to work correctly. 

interrupt
Use this attribute on the ARM, AVR, M32R/D and Xstormy16 ports to indicate that the specified function is an interrupt handler. The compiler will generate function entry and exit sequences suitable for use in an interrupt handler when this attribute is present.

Note, interrupt handlers for the H8/300, H8/300H and SH processors can be specified via the interrupt_handler attribute.

Note, on the AVR interrupts will be enabled inside the function.

Note, for the ARM you can specify the kind of interrupt to be handled by adding an optional parameter to the interrupt attribute like this:

          void f () __attribute__ ((interrupt ("IRQ")));
          

Permissible values for this parameter are: IRQ, FIQ, SWI, ABORT and UNDEF. 

interrupt_handler
Use this attribute on the H8/300, H8/300H and SH to indicate that the specified function is an interrupt handler. The compiler will generate function entry and exit sequences suitable for use in an interrupt handler when this attribute is present. 
sp_switch
Use this attribute on the SH to indicate an interrupt_handler function should switch to an alternate stack. It expects a string argument that names a global variable holding the address of the alternate stack.
          void *alt_stack;
          void f () __attribute__ ((interrupt_handler,
                                    sp_switch ("alt_stack")));
          

trap_exit
Use this attribute on the SH for an interrupt_handle to return using trapa instead of rte. This attribute expects an integer argument specifying the trap number to be used. 
eightbit_data
Use this attribute on the H8/300 and H8/300H to indicate that the specified variable should be placed into the eight bit data section. The compiler will generate more efficient code for certain operations on data in the eight bit data area. Note the eight bit data area is limited to 256 bytes of data.

You must use GAS and GLD from GNU binutils version 2.7 or later for this attribute to work correctly. 

tiny_data
Use this attribute on the H8/300H to indicate that the specified variable should be placed into the tiny data section. The compiler will generate more efficient code for loads and stores on data in the tiny data section. Note the tiny data area is limited to slightly under 32kbytes of data. 
signal
Use this attribute on the AVR to indicate that the specified function is an signal handler. The compiler will generate function entry and exit sequences suitable for use in an signal handler when this attribute is present. Interrupts will be disabled inside function. 
naked
Use this attribute on the ARM or AVR ports to indicate that the specified function do not need prologue/epilogue sequences generated by the compiler. It is up to the programmer to provide these sequences. 
model (model-name)
Use this attribute on the M32R/D to set the addressability of an object, and the code generated for a function. The identifier model-name is one ofsmallmedium, or large, representing each of the code models.

Small model objects live in the lower 16MB of memory (so that their addresses can be loaded with the ld24 instruction), and are callable with the blinstruction.

Medium model objects may live anywhere in the 32-bit address space (the compiler will generate seth/add3 instructions to load their addresses), and are callable with the bl instruction.

Large model objects may live anywhere in the 32-bit address space (the compiler will generate seth/add3 instructions to load their addresses), and may not be reachable with the bl instruction (the compiler will generate the much slower seth/add3/jl instruction sequence).

You can specify multiple attributes in a declaration by separating them by commas within the double parentheses or by immediately following an attribute declaration with another attribute declaration.

Some people object to the __attribute__ feature, suggesting that ISO C's #pragma should be used instead. At the time __attribute__ was designed, there were two reasons for not doing this.

  1. It is impossible to generate #pragma commands from a macro.
  2. There is no telling what the same #pragma might mean in another compiler.

These two reasons applied to almost any application that might have been proposed for #pragma. It was basically a mistake to use #pragma for anything.

The ISO C99 standard includes _Pragma, which now allows pragmas to be generated from macros. In addition, a #pragma GCC namespace is now in use for GCC-specific pragmas. However, it has been found convenient to use __attribute__ to achieve a natural attachment of attributes to their corresponding declarations, whereas #pragma GCC is of use for constructs that do not naturally form part of the grammar. See Miscellaneous Preprocessing Directives.


====

http://gcc.gnu.org/onlinedocs/gcc-3.1/gcc/Function-Attributes.html#Function%20Attributes

1. List the six main biwise operators in C++ and explain the function of each. 2. Why cannot bitwise operations be applied to variables of floating-point type? 3. Explain the purpose of the << (left shift) and >> (right shift) operators. What is the typical effect on the decimal value of a number when it is shifted left by 1? Shifted right by 1? 4. Describe the process of using a mask to check the value of a specific bit within an
integer. 5. How can you use the bitwise AND operator (&) to check if a number is even or odd?
Explain the logic. 6. What is the difference between the logical AND (&&) and the bitwise AND (&)? Provide an example scenario for each. 7. Explain the purpose of the ~ (bitwise NOT) operator. What is the result of applying it to a mask, and how can this be useful? 1. What is the primary goal of program debugging? What types of errors can it help identify? 2. Describe the difference between Step Over (F10) and Step Into (F11) debugging commands. When would you choose one over the other? 3. What is the purpose of a breakpoint in planned debugging? How do you set and remove a breakpoint in Visual Studio? 4. Explain the utility of the "Watch" window compared to the "Autos" or "Locals" windows during a debugging session. 5. What is the key difference between the Debug and Release configurations when building a project? Why is it necessary to create a Release version after successful debugging? 6. List at least three types of files commonly found in a project's Debug folder and briefly state their purpose (e.g., *.pdb). 7. During debugging, you notice a variable has an incorrect value. How can you change its value during runtime to test a hypothesis without modifying the source code? 8. What command is used to exit the debug mode and stop the current debugging session? 1. What is an array in C++? List its three main characteristics. 2. How are array elements numbered in C++? What is the valid index range for an array declared as int data[25];? 3. Explain the difference between array declaration and initialization. Provide an example of each. 4. What is an initializer list? What happens if the initializer list is shorter than the array size? 5. How can you let the compiler automatically determine the size of an array during initialization? 6. What values do elements of a local array contain if it is declared but not explicitly initialized? How does this differ from a global array? 7. What is an array out-of-bounds error? Why is it dangerous, and what are its potential consequences? 8. How do you calculate the number of elements in an array using the sizeof operator?
Provide the formula. What is a significant limitation of this method? 9. Why is it impossible to copy the contents of one array into another using the assignment
operator (arrayB = arrayA;)? What is the correct way to perform this operation? 10. Why does comparing two arrays using the equality operator (arrayA == arrayB) not check if their elements are equal? How should array comparison be done correctly? 11. What does the name of an array represent in terms of memory? 1. What is a pointer in C++ and what are its two main attributes? 2. Explain the difference between the & and * operators when working with pointers. 3. Why is pointer initialization critical and what dangers do uninitialized pointers pose? 4. What is the fundamental relationship between arrays and pointers in C++? 5. How does pointer arithmetic work and why does ptr + 1 advance by the size of the pointed type rather than 1 byte? 6. What is the difference between an array name and a pointer variable? Why can't you increment an array name? 7. What are the differences between const int*, int* const, and const int* const? 8. How can you safely iterate through an array using pointers, and what are the boundary risks? 9. What is a null pointer and why should you check for nullptr before dereferencing? 10. How do you access array elements using pointer syntax, and how does the compiler translate arr[i] internally? 1. What is a multidimensional array? How is a two-dimensional array structured in memory? 2. Explain the concept of an "array of arrays". How does this relate to the declaration int arr/ROWS//COLS;? 3. The name of a two-dimensional array without indices is a pointer constant. What does this pointer point to? What do the expressions *(A + i) and *(*(A + i) +j) mean for a two-dimensional array A? 4. Describe the different ways to access the element A/1/[2/ of a two-dimensional array
using pointers. 5. What is the rule for omitting the size of dimensions when initializing and when passing a multidimensional array to a function? Why is it allowed to omit only the first dimension? 6. Explain the principle of "row-major order" for storing two-dimensional arrays in memory.
How does this affect element access? 7. Why are nested loops the standard tool for processing multidimensional arrays?
Describe the typical pattern for iterating through a matrix. 1. How is a character string stored in memory in C++? What is the role of the null terminator (10), and why is it critical for C-style strings? 2. Why must the size of a char array declared to hold a string be at least one greater than the number of characters you intend to store? 3. The array name without an index is a pointer constant. What does the name of a char array point to? 4. What are the two main ways to initialize a C-style string? What is a common mistake when using the initializer list method, and what is its consequence? 5. Why is it necessary to add _CRT_SECURE_NO_WARNINGS to the preprocessor definitions in Visual Studio when working with many standard C library functions?
What is the alternative approach? 6. What is the key difference between stropy and strncpy? Why might strncpy be considered safer? 7. How does the stremp function determine if one string is "less than" another? Why can't you use the == operator to compare two C-style strings for content equality? 8. Describe the purpose and parameters of the strok function. How do you get all tokens from a string? 9. What do the functions strchr and strrchr do? How do they differ? 10. Explain what the strstr function returns and what it is commonly used for. 11. What is the purpose of the functions in the < cctype> header? Give three examples of such functions and their use. 12. What is the difference between tolower(c) and_tolower(c)? When should you use each? 1. What is a function in C++? Name the three core benefits of using functions in a program. 2. What is the difference between a function declaration (prototype) and a function definition? Provide examples. 3. What is a function signature? Which elements are part of the signature, and which are not? 4. What methods of passing parameters to a function do you know? Explain the difference between pass-by-value, pass-by-pointer, and pass-by-reference. 5. Why can't you pass an array to a function by value? What is the correct way to pass an array to a function? 6. What is variable scope? How is it related to functions? 7. How does a function return a value? What happens if a function with a non-void return type does not return a value on all control paths? 8. Can you use multiple return statements in a single function? Provide an example. 9. What is function overloading? What is it based on? 10. How is interaction between functions organized in a program? Provide an example program with several functions. 11. What are default parameters? How are they specified, and in what cases are they useful? 12. How can you prevent a function from modifying the data passed to it? What modifiers are used for this? 13. What is recursion? Provide an example of a recursive function. 14. What common errors occur when working with functions? How can they be avoided? 15. How do you use pointers to functions? Provide an example of declaring and calling a function through a pointer. 用中文解答
11-26
1. List the six main biwise operators in C++ and explain the function of each. 2. Why cannot bitwise operations be applied to variables of floating-point type? 3. Explain the purpose of the << (left shift) and >> (right shift) operators. What is the typical effect on the decimal value of a number when it is shifted left by 1? Shifted right by 1? 4. Describe the process of using a mask to check the value of a specific bit within an
integer. 5. How can you use the bitwise AND operator (&) to check if a number is even or odd?
Explain the logic. 6. What is the difference between the logical AND (&&) and the bitwise AND (&)? Provide an example scenario for each. 7. Explain the purpose of the ~ (bitwise NOT) operator. What is the result of applying it to a mask, and how can this be useful? 1. What is the primary goal of program debugging? What types of errors can it help identify? 2. Describe the difference between Step Over (F10) and Step Into (F11) debugging commands. When would you choose one over the other? 3. What is the purpose of a breakpoint in planned debugging? How do you set and remove a breakpoint in Visual Studio? 4. Explain the utility of the "Watch" window compared to the "Autos" or "Locals" windows during a debugging session. 5. What is the key difference between the Debug and Release configurations when building a project? Why is it necessary to create a Release version after successful debugging? 6. List at least three types of files commonly found in a project's Debug folder and briefly state their purpose (e.g., *.pdb). 7. During debugging, you notice a variable has an incorrect value. How can you change its value during runtime to test a hypothesis without modifying the source code? 8. What command is used to exit the debug mode and stop the current debugging session? 1. What is an array in C++? List its three main characteristics. 2. How are array elements numbered in C++? What is the valid index range for an array declared as int data[25];? 3. Explain the difference between array declaration and initialization. Provide an example of each. 4. What is an initializer list? What happens if the initializer list is shorter than the array size? 5. How can you let the compiler automatically determine the size of an array during initialization? 6. What values do elements of a local array contain if it is declared but not explicitly initialized? How does this differ from a global array? 7. What is an array out-of-bounds error? Why is it dangerous, and what are its potential consequences? 8. How do you calculate the number of elements in an array using the sizeof operator?
Provide the formula. What is a significant limitation of this method? 9. Why is it impossible to copy the contents of one array into another using the assignment
operator (arrayB = arrayA;)? What is the correct way to perform this operation? 10. Why does comparing two arrays using the equality operator (arrayA == arrayB) not check if their elements are equal? How should array comparison be done correctly? 11. What does the name of an array represent in terms of memory? 1. What is a pointer in C++ and what are its two main attributes? 2. Explain the difference between the & and * operators when working with pointers. 3. Why is pointer initialization critical and what dangers do uninitialized pointers pose? 4. What is the fundamental relationship between arrays and pointers in C++? 5. How does pointer arithmetic work and why does ptr + 1 advance by the size of the pointed type rather than 1 byte? 6. What is the difference between an array name and a pointer variable? Why can't you increment an array name? 7. What are the differences between const int*, int* const, and const int* const? 8. How can you safely iterate through an array using pointers, and what are the boundary risks? 9. What is a null pointer and why should you check for nullptr before dereferencing? 10. How do you access array elements using pointer syntax, and how does the compiler translate arr[i] internally? 1. What is a multidimensional array? How is a two-dimensional array structured in memory? 2. Explain the concept of an "array of arrays". How does this relate to the declaration int arr/ROWS//COLS;? 3. The name of a two-dimensional array without indices is a pointer constant. What does this pointer point to? What do the expressions *(A + i) and *(*(A + i) +j) mean for a two-dimensional array A? 4. Describe the different ways to access the element A/1/[2/ of a two-dimensional array
using pointers. 5. What is the rule for omitting the size of dimensions when initializing and when passing a multidimensional array to a function? Why is it allowed to omit only the first dimension? 6. Explain the principle of "row-major order" for storing two-dimensional arrays in memory.
How does this affect element access? 7. Why are nested loops the standard tool for processing multidimensional arrays?
Describe the typical pattern for iterating through a matrix. 1. How is a character string stored in memory in C++? What is the role of the null terminator (10), and why is it critical for C-style strings? 2. Why must the size of a char array declared to hold a string be at least one greater than the number of characters you intend to store? 3. The array name without an index is a pointer constant. What does the name of a char array point to? 4. What are the two main ways to initialize a C-style string? What is a common mistake when using the initializer list method, and what is its consequence? 5. Why is it necessary to add _CRT_SECURE_NO_WARNINGS to the preprocessor definitions in Visual Studio when working with many standard C library functions?
What is the alternative approach? 6. What is the key difference between stropy and strncpy? Why might strncpy be considered safer? 7. How does the stremp function determine if one string is "less than" another? Why can't you use the == operator to compare two C-style strings for content equality? 8. Describe the purpose and parameters of the strok function. How do you get all tokens from a string? 9. What do the functions strchr and strrchr do? How do they differ? 10. Explain what the strstr function returns and what it is commonly used for. 11. What is the purpose of the functions in the < cctype> header? Give three examples of such functions and their use. 12. What is the difference between tolower(c) and_tolower(c)? When should you use each? 1. What is a function in C++? Name the three core benefits of using functions in a program. 2. What is the difference between a function declaration (prototype) and a function definition? Provide examples. 3. What is a function signature? Which elements are part of the signature, and which are not? 4. What methods of passing parameters to a function do you know? Explain the difference between pass-by-value, pass-by-pointer, and pass-by-reference. 5. Why can't you pass an array to a function by value? What is the correct way to pass an array to a function? 6. What is variable scope? How is it related to functions? 7. How does a function return a value? What happens if a function with a non-void return type does not return a value on all control paths? 8. Can you use multiple return statements in a single function? Provide an example. 9. What is function overloading? What is it based on? 10. How is interaction between functions organized in a program? Provide an example program with several functions. 11. What are default parameters? How are they specified, and in what cases are they useful? 12. How can you prevent a function from modifying the data passed to it? What modifiers are used for this? 13. What is recursion? Provide an example of a recursive function. 14. What common errors occur when working with functions? How can they be avoided? 15. How do you use pointers to functions? Provide an example of declaring and calling a function through a pointer.用中文解答
11-23
1. List the six main biwise operators in C++ and explain the function of each. 2. Why cannot bitwise operations be applied to variables of floating-point type? 3. Explain the purpose of the << (left shift) and >> (right shift) operators. What is the typical effect on the decimal value of a number when it is shifted left by 1? Shifted right by 1? 4. Describe the process of using a mask to check the value of a specific bit within an
integer. 5. How can you use the bitwise AND operator (&) to check if a number is even or odd?
Explain the logic. 6. What is the difference between the logical AND (&&) and the bitwise AND (&)? Provide an example scenario for each. 7. Explain the purpose of the ~ (bitwise NOT) operator. What is the result of applying it to a mask, and how can this be useful? 1. What is the primary goal of program debugging? What types of errors can it help identify? 2. Describe the difference between Step Over (F10) and Step Into (F11) debugging commands. When would you choose one over the other? 3. What is the purpose of a breakpoint in planned debugging? How do you set and remove a breakpoint in Visual Studio? 4. Explain the utility of the "Watch" window compared to the "Autos" or "Locals" windows during a debugging session. 5. What is the key difference between the Debug and Release configurations when building a project? Why is it necessary to create a Release version after successful debugging? 6. List at least three types of files commonly found in a project's Debug folder and briefly state their purpose (e.g., *.pdb). 7. During debugging, you notice a variable has an incorrect value. How can you change its value during runtime to test a hypothesis without modifying the source code? 8. What command is used to exit the debug mode and stop the current debugging session? 1. What is an array in C++? List its three main characteristics. 2. How are array elements numbered in C++? What is the valid index range for an array declared as int data[25];? 3. Explain the difference between array declaration and initialization. Provide an example of each. 4. What is an initializer list? What happens if the initializer list is shorter than the array size? 5. How can you let the compiler automatically determine the size of an array during initialization? 6. What values do elements of a local array contain if it is declared but not explicitly initialized? How does this differ from a global array? 7. What is an array out-of-bounds error? Why is it dangerous, and what are its potential consequences? 8. How do you calculate the number of elements in an array using the sizeof operator?
Provide the formula. What is a significant limitation of this method? 9. Why is it impossible to copy the contents of one array into another using the assignment
operator (arrayB = arrayA;)? What is the correct way to perform this operation? 10. Why does comparing two arrays using the equality operator (arrayA == arrayB) not check if their elements are equal? How should array comparison be done correctly? 11. What does the name of an array represent in terms of memory? 1. What is a pointer in C++ and what are its two main attributes? 2. Explain the difference between the & and * operators when working with pointers. 3. Why is pointer initialization critical and what dangers do uninitialized pointers pose? 4. What is the fundamental relationship between arrays and pointers in C++? 5. How does pointer arithmetic work and why does ptr + 1 advance by the size of the pointed type rather than 1 byte? 6. What is the difference between an array name and a pointer variable? Why can't you increment an array name? 7. What are the differences between const int*, int* const, and const int* const? 8. How can you safely iterate through an array using pointers, and what are the boundary risks? 9. What is a null pointer and why should you check for nullptr before dereferencing? 10. How do you access array elements using pointer syntax, and how does the compiler translate arr[i] internally? 1. What is a multidimensional array? How is a two-dimensional array structured in memory? 2. Explain the concept of an "array of arrays". How does this relate to the declaration int arr/ROWS//COLS;? 3. The name of a two-dimensional array without indices is a pointer constant. What does this pointer point to? What do the expressions *(A + i) and *(*(A + i) +j) mean for a two-dimensional array A? 4. Describe the different ways to access the element A/1/[2/ of a two-dimensional array
using pointers. 5. What is the rule for omitting the size of dimensions when initializing and when passing a multidimensional array to a function? Why is it allowed to omit only the first dimension? 6. Explain the principle of "row-major order" for storing two-dimensional arrays in memory.
How does this affect element access? 7. Why are nested loops the standard tool for processing multidimensional arrays?
Describe the typical pattern for iterating through a matrix. 1. How is a character string stored in memory in C++? What is the role of the null terminator (10), and why is it critical for C-style strings? 2. Why must the size of a char array declared to hold a string be at least one greater than the number of characters you intend to store? 3. The array name without an index is a pointer constant. What does the name of a char array point to? 4. What are the two main ways to initialize a C-style string? What is a common mistake when using the initializer list method, and what is its consequence? 5. Why is it necessary to add _CRT_SECURE_NO_WARNINGS to the preprocessor definitions in Visual Studio when working with many standard C library functions?
What is the alternative approach? 6. What is the key difference between stropy and strncpy? Why might strncpy be considered safer? 7. How does the stremp function determine if one string is "less than" another? Why can't you use the == operator to compare two C-style strings for content equality? 8. Describe the purpose and parameters of the strok function. How do you get all tokens from a string? 9. What do the functions strchr and strrchr do? How do they differ? 10. Explain what the strstr function returns and what it is commonly used for. 11. What is the purpose of the functions in the < cctype> header? Give three examples of such functions and their use. 12. What is the difference between tolower(c) and_tolower(c)? When should you use each? 1. What is a function in C++? Name the three core benefits of using functions in a program. 2. What is the difference between a function declaration (prototype) and a function definition? Provide examples. 3. What is a function signature? Which elements are part of the signature, and which are not? 4. What methods of passing parameters to a function do you know? Explain the difference between pass-by-value, pass-by-pointer, and pass-by-reference. 5. Why can't you pass an array to a function by value? What is the correct way to pass an array to a function? 6. What is variable scope? How is it related to functions? 7. How does a function return a value? What happens if a function with a non-void return type does not return a value on all control paths? 8. Can you use multiple return statements in a single function? Provide an example. 9. What is function overloading? What is it based on? 10. How is interaction between functions organized in a program? Provide an example program with several functions. 11. What are default parameters? How are they specified, and in what cases are they useful? 12. How can you prevent a function from modifying the data passed to it? What modifiers are used for this? 13. What is recursion? Provide an example of a recursive function. 14. What common errors occur when working with functions? How can they be avoided? 15. How do you use pointers to functions? Provide an example of declaring and calling a function through a pointer.用中文解答,每个问题重复一遍题目
11-23
1. What is an IDE (Integrated Development Environment), and what are its main components? 2. What is the role of a compiler in the C++ development process? 3. What is the difference between source code (e.g., a .cpp file) and an executable file? 4. In the "Hello, World!" program, what is the purpose of the line #include <iostream>? 5. What is special about the main() function in a C++ program? 6. Why do computers fundamentally operate using the binary (base-2) system? 7. What is the base of the hexadecimal system? Why is it often used by programmers as a shorthand for binary numbers? 8. Explain the "triad" method for converting an octal number to binary. 9. Briefly describe the "division by 2" method for converting a decimal number to binary. 10. What is the decimal value of the binary number 1011? 1. What is the purpose of the std::cout object? Which header file must be included to use it? 2.What is the difference between an escape sequence like \n and a manipulator like std::endl? (Hint: Both create a new line, but they have a subtle difference). 3.How would you print the following text to the console, including the quotes and the backslash: He said: "The file is in C:\Users\"? 4.Is it possible to write an entire multi-line text output using only one std::cout statement? If yes, how? 5.What is a syntax error? Give an example of a syntax error from Task 2. (Task 2: Debugging The following program contains several syntax errors. Copy the code into your IDE, identify the errors, fix them, and run the program to ensure it works correctly. Incorrect Code: */ Now you should not forget your glasses // #include <stream> int main { cout << "If this text" , cout >> " appears on your display, cout << " endl;" cout << 'you can pat yourself on ' << " the back!" << endl. return 0; "; ) Hint: Pay close attention to comments, header files, brackets ({}), operators (<<), semicolons, and how strings and manipulators are written.) 1. What is the difference between variable declaration and initialization? 2.What will be the result of the expression 7 / 2 in C++? Why? 3.What will be the result of the expression 10 % 3? What is the main purpose of the modulus operator? 4. What is the purpose of std::cin and the >> operator? 5. A beginner tries to swap two integer variables a and b with the code a = b; b = a;. Why will this not work correctly? 1. What is an algorithm? Name the primary ways to represent an algorithm. 2.List the main flowchart symbols and explain their purpose. 3.What are the three fundamental types of algorithm structures? Briefly describe each. 4.In a branching algorithm, what determines the flow of execution? 5.What is the key characteristic of a linear algorithm? 6.When is a cyclic algorithm structure used?7. 8. 9. 7.Explain the purpose of a connector in a flowchart. 8.What is the difference between a predefined process block and a standard process block? 9.In the context of solving a quadratic equation algorithm, what condition must be checked before calculating the roots? Why? 1. What are the three main approaches to data input and output offered by C++? 2. What is the purpose of the SetConsoleOutputCP(65001) and SetConsoleCP(65001)
functions in the provided C++ program example? 3. Explain the difference between the cin and cout objects in Stream 1/0. 4. When using formatted 1/0, which header file must be included to use manipulators like setw and setprecision? 5. List three manipulators used for data output in C++ and briefly describe what each one does. 6. In Formatted I/0 using printf), what are the conversion specifications for a decimal integer and a real number in exponential form? 7. What is the difference in how the & (address-of) operator is used when inputting a value for an integer variable versus a string variable using the scanf() function? 8. Which Character I/O function is used to output a single character to the screen, and which is used to output a string? 9. Describe the syntax and function of the ternary operator in C++. 10. What is the difference between the logical AND (&&) and logical OR (I|) operators when combining multiple conditions? 11. When is the default label executed in a C++ switch statement? 12. What is the primary purpose of the break statement within a switch block? 1. What is the main purpose of using loops in programming? 2. Explain the key difference between the for, while, and do while loops. 3. What happens if you forget to include the increment/decrement statement in a while loop? 4. How can you interrupt an infinite loop during program execution? 5. What is the role of the setw() and setfill) manipulators in C++? 6. In a nested loop, how does the inner loop behave relative to the outer loop? 7. What is type casting, and why is it used in loop calculations? 8. How does the do while loop differ from the while loop in terms of condition checking? 9. What output formatting options can be used to align numerical results in columns? 10*. How would you modify a loop to skip certain iterations based on a condition? 1. List the six main biwise operators in C++ and explain the function of each. 2. Why cannot bitwise operations be applied to variables of floating-point type? 3. Explain the purpose of the << (left shift) and >> (right shift) operators. What is the typical effect on the decimal value of a number when it is shifted left by 1? Shifted right by 1? 4. Describe the process of using a mask to check the value of a specific bit within an
integer. 5. How can you use the bitwise AND operator (&) to check if a number is even or odd?
Explain the logic. 6. What is the difference between the logical AND (&&) and the bitwise AND (&)? Provide an example scenario for each. 7. Explain the purpose of the ~ (bitwise NOT) operator. What is the result of applying it to a mask, and how can this be useful? 1. What is the primary goal of program debugging? What types of errors can it help identify? 2. Describe the difference between Step Over (F10) and Step Into (F11) debugging commands. When would you choose one over the other? 3. What is the purpose of a breakpoint in planned debugging? How do you set and remove a breakpoint in Visual Studio? 4. Explain the utility of the "Watch" window compared to the "Autos" or "Locals" windows during a debugging session. 5. What is the key difference between the Debug and Release configurations when building a project? Why is it necessary to create a Release version after successful debugging? 6. List at least three types of files commonly found in a project's Debug folder and briefly state their purpose (e.g., *.pdb). 7. During debugging, you notice a variable has an incorrect value. How can you change its value during runtime to test a hypothesis without modifying the source code? 8. What command is used to exit the debug mode and stop the current debugging session? 1. What is an array in C++? List its three main characteristics. 2. How are array elements numbered in C++? What is the valid index range for an array declared as int data[25];? 3. Explain the difference between array declaration and initialization. Provide an example of each. 4. What is an initializer list? What happens if the initializer list is shorter than the array size? 5. How can you let the compiler automatically determine the size of an array during initialization? 6. What values do elements of a local array contain if it is declared but not explicitly initialized? How does this differ from a global array? 7. What is an array out-of-bounds error? Why is it dangerous, and what are its potential consequences? 8. How do you calculate the number of elements in an array using the sizeof operator?
Provide the formula. What is a significant limitation of this method? 9. Why is it impossible to copy the contents of one array into another using the assignment
operator (arrayB = arrayA;)? What is the correct way to perform this operation? 10. Why does comparing two arrays using the equality operator (arrayA == arrayB) not check if their elements are equal? How should array comparison be done correctly? 11. What does the name of an array represent in terms of memory? 1. What is a pointer in C++ and what are its two main attributes? 2. Explain the difference between the & and * operators when working with pointers. 3. Why is pointer initialization critical and what dangers do uninitialized pointers pose? 4. What is the fundamental relationship between arrays and pointers in C++? 5. How does pointer arithmetic work and why does ptr + 1 advance by the size of the pointed type rather than 1 byte? 6. What is the difference between an array name and a pointer variable? Why can't you increment an array name? 7. What are the differences between const int*, int* const, and const int* const? 8. How can you safely iterate through an array using pointers, and what are the boundary risks? 9. What is a null pointer and why should you check for nullptr before dereferencing? 10. How do you access array elements using pointer syntax, and how does the compiler translate arr[i] internally? 1. What is a multidimensional array? How is a two-dimensional array structured in memory? 2. Explain the concept of an "array of arrays". How does this relate to the declaration int arr/ROWS//COLS;? 3. The name of a two-dimensional array without indices is a pointer constant. What does this pointer point to? What do the expressions *(A + i) and *(*(A + i) +j) mean for a two-dimensional array A? 4. Describe the different ways to access the element A/1/[2/ of a two-dimensional array
using pointers. 5. What is the rule for omitting the size of dimensions when initializing and when passing a multidimensional array to a function? Why is it allowed to omit only the first dimension? 6. Explain the principle of "row-major order" for storing two-dimensional arrays in memory.
How does this affect element access? 7. Why are nested loops the standard tool for processing multidimensional arrays?
Describe the typical pattern for iterating through a matrix. 1. How is a character string stored in memory in C++? What is the role of the null terminator (10), and why is it critical for C-style strings? 2. Why must the size of a char array declared to hold a string be at least one greater than the number of characters you intend to store? 3. The array name without an index is a pointer constant. What does the name of a char array point to? 4. What are the two main ways to initialize a C-style string? What is a common mistake when using the initializer list method, and what is its consequence? 5. Why is it necessary to add _CRT_SECURE_NO_WARNINGS to the preprocessor definitions in Visual Studio when working with many standard C library functions?
What is the alternative approach? 6. What is the key difference between stropy and strncpy? Why might strncpy be considered safer? 7. How does the stremp function determine if one string is "less than" another? Why can't you use the == operator to compare two C-style strings for content equality? 8. Describe the purpose and parameters of the strok function. How do you get all tokens from a string? 9. What do the functions strchr and strrchr do? How do they differ? 10. Explain what the strstr function returns and what it is commonly used for. 11. What is the purpose of the functions in the < cctype> header? Give three examples of such functions and their use. 12. What is the difference between tolower(c) and_tolower(c)? When should you use each? 1. What is a function in C++? Name the three core benefits of using functions in a program. 2. What is the difference between a function declaration (prototype) and a function definition? Provide examples. 3. What is a function signature? Which elements are part of the signature, and which are not? 4. What methods of passing parameters to a function do you know? Explain the difference between pass-by-value, pass-by-pointer, and pass-by-reference. 5. Why can't you pass an array to a function by value? What is the correct way to pass an array to a function? 6. What is variable scope? How is it related to functions? 7. How does a function return a value? What happens if a function with a non-void return type does not return a value on all control paths? 8. Can you use multiple return statements in a single function? Provide an example. 9. What is function overloading? What is it based on? 10. How is interaction between functions organized in a program? Provide an example program with several functions. 11. What are default parameters? How are they specified, and in what cases are they useful? 12. How can you prevent a function from modifying the data passed to it? What modifiers are used for this? 13. What is recursion? Provide an example of a recursive function. 14. What common errors occur when working with functions? How can they be avoided? 15. How do you use pointers to functions? Provide an example of declaring and calling a function through a pointer. 用中文解答
11-28
1. What is an IDE (Integrated Development Environment), and what are its main components? 2. What is the role of a compiler in the C++ development process? 3. What is the difference between source code (e.g., a .cpp file) and an executable file? 4. In the "Hello, World!" program, what is the purpose of the line #include <iostream>? 5. What is special about the main() function in a C++ program? 6. Why do computers fundamentally operate using the binary (base-2) system? 7. What is the base of the hexadecimal system? Why is it often used by programmers as a shorthand for binary numbers? 8. Explain the "triad" method for converting an octal number to binary. 9. Briefly describe the "division by 2" method for converting a decimal number to binary. 10. What is the decimal value of the binary number 1011? 1. What is the purpose of the std::cout object? Which header file must be included to use it? 2.What is the difference between an escape sequence like \n and a manipulator like std::endl? (Hint: Both create a new line, but they have a subtle difference). 3.How would you print the following text to the console, including the quotes and the backslash: He said: "The file is in C:\Users\"? 4.Is it possible to write an entire multi-line text output using only one std::cout statement? If yes, how? 5.What is a syntax error? Give an example of a syntax error from Task 2. (Task 2: Debugging The following program contains several syntax errors. Copy the code into your IDE, identify the errors, fix them, and run the program to ensure it works correctly. Incorrect Code: */ Now you should not forget your glasses // #include <stream> int main { cout << "If this text" , cout >> " appears on your display, cout << " endl;" cout << 'you can pat yourself on ' << " the back!" << endl. return 0; "; ) Hint: Pay close attention to comments, header files, brackets ({}), operators (<<), semicolons, and how strings and manipulators are written.) 1. What is the difference between variable declaration and initialization? 2.What will be the result of the expression 7 / 2 in C++? Why? 3.What will be the result of the expression 10 % 3? What is the main purpose of the modulus operator? 4. What is the purpose of std::cin and the >> operator? 5. A beginner tries to swap two integer variables a and b with the code a = b; b = a;. Why will this not work correctly? 1. What is an algorithm? Name the primary ways to represent an algorithm. 2.List the main flowchart symbols and explain their purpose. 3.What are the three fundamental types of algorithm structures? Briefly describe each. 4.In a branching algorithm, what determines the flow of execution? 5.What is the key characteristic of a linear algorithm? 6.When is a cyclic algorithm structure used?7. 8. 9. 7.Explain the purpose of a connector in a flowchart. 8.What is the difference between a predefined process block and a standard process block? 9.In the context of solving a quadratic equation algorithm, what condition must be checked before calculating the roots? Why? 1. What are the three main approaches to data input and output offered by C++? 2. What is the purpose of the SetConsoleOutputCP(65001) and SetConsoleCP(65001)
functions in the provided C++ program example? 3. Explain the difference between the cin and cout objects in Stream 1/0. 4. When using formatted 1/0, which header file must be included to use manipulators like setw and setprecision? 5. List three manipulators used for data output in C++ and briefly describe what each one does. 6. In Formatted I/0 using printf), what are the conversion specifications for a decimal integer and a real number in exponential form? 7. What is the difference in how the & (address-of) operator is used when inputting a value for an integer variable versus a string variable using the scanf() function? 8. Which Character I/O function is used to output a single character to the screen, and which is used to output a string? 9. Describe the syntax and function of the ternary operator in C++. 10. What is the difference between the logical AND (&&) and logical OR (I|) operators when combining multiple conditions? 11. When is the default label executed in a C++ switch statement? 12. What is the primary purpose of the break statement within a switch block? 1. What is the main purpose of using loops in programming? 2. Explain the key difference between the for, while, and do while loops. 3. What happens if you forget to include the increment/decrement statement in a while loop? 4. How can you interrupt an infinite loop during program execution? 5. What is the role of the setw() and setfill) manipulators in C++? 6. In a nested loop, how does the inner loop behave relative to the outer loop? 7. What is type casting, and why is it used in loop calculations? 8. How does the do while loop differ from the while loop in terms of condition checking? 9. What output formatting options can be used to align numerical results in columns? 10*. How would you modify a loop to skip certain iterations based on a condition? 1. List the six main biwise operators in C++ and explain the function of each. 2. Why cannot bitwise operations be applied to variables of floating-point type? 3. Explain the purpose of the << (left shift) and >> (right shift) operators. What is the typical effect on the decimal value of a number when it is shifted left by 1? Shifted right by 1? 4. Describe the process of using a mask to check the value of a specific bit within an
integer. 5. How can you use the bitwise AND operator (&) to check if a number is even or odd?
Explain the logic. 6. What is the difference between the logical AND (&&) and the bitwise AND (&)? Provide an example scenario for each. 7. Explain the purpose of the ~ (bitwise NOT) operator. What is the result of applying it to a mask, and how can this be useful? 1. What is the primary goal of program debugging? What types of errors can it help identify? 2. Describe the difference between Step Over (F10) and Step Into (F11) debugging commands. When would you choose one over the other? 3. What is the purpose of a breakpoint in planned debugging? How do you set and remove a breakpoint in Visual Studio? 4. Explain the utility of the "Watch" window compared to the "Autos" or "Locals" windows during a debugging session. 5. What is the key difference between the Debug and Release configurations when building a project? Why is it necessary to create a Release version after successful debugging? 6. List at least three types of files commonly found in a project's Debug folder and briefly state their purpose (e.g., *.pdb). 7. During debugging, you notice a variable has an incorrect value. How can you change its value during runtime to test a hypothesis without modifying the source code? 8. What command is used to exit the debug mode and stop the current debugging session? 1. What is an array in C++? List its three main characteristics. 2. How are array elements numbered in C++? What is the valid index range for an array declared as int data[25];? 3. Explain the difference between array declaration and initialization. Provide an example of each. 4. What is an initializer list? What happens if the initializer list is shorter than the array size? 5. How can you let the compiler automatically determine the size of an array during initialization? 6. What values do elements of a local array contain if it is declared but not explicitly initialized? How does this differ from a global array? 7. What is an array out-of-bounds error? Why is it dangerous, and what are its potential consequences? 8. How do you calculate the number of elements in an array using the sizeof operator?
Provide the formula. What is a significant limitation of this method? 9. Why is it impossible to copy the contents of one array into another using the assignment
operator (arrayB = arrayA;)? What is the correct way to perform this operation? 10. Why does comparing two arrays using the equality operator (arrayA == arrayB) not check if their elements are equal? How should array comparison be done correctly? 11. What does the name of an array represent in terms of memory? 1. What is a pointer in C++ and what are its two main attributes? 2. Explain the difference between the & and * operators when working with pointers. 3. Why is pointer initialization critical and what dangers do uninitialized pointers pose? 4. What is the fundamental relationship between arrays and pointers in C++? 5. How does pointer arithmetic work and why does ptr + 1 advance by the size of the pointed type rather than 1 byte? 6. What is the difference between an array name and a pointer variable? Why can't you increment an array name? 7. What are the differences between const int*, int* const, and const int* const? 8. How can you safely iterate through an array using pointers, and what are the boundary risks? 9. What is a null pointer and why should you check for nullptr before dereferencing? 10. How do you access array elements using pointer syntax, and how does the compiler translate arr[i] internally? 1. What is a multidimensional array? How is a two-dimensional array structured in memory? 2. Explain the concept of an "array of arrays". How does this relate to the declaration int arr/ROWS//COLS;? 3. The name of a two-dimensional array without indices is a pointer constant. What does this pointer point to? What do the expressions *(A + i) and *(*(A + i) +j) mean for a two-dimensional array A? 4. Describe the different ways to access the element A/1/[2/ of a two-dimensional array
using pointers. 5. What is the rule for omitting the size of dimensions when initializing and when passing a multidimensional array to a function? Why is it allowed to omit only the first dimension? 6. Explain the principle of "row-major order" for storing two-dimensional arrays in memory.
How does this affect element access? 7. Why are nested loops the standard tool for processing multidimensional arrays?
Describe the typical pattern for iterating through a matrix. 1. How is a character string stored in memory in C++? What is the role of the null terminator (10), and why is it critical for C-style strings? 2. Why must the size of a char array declared to hold a string be at least one greater than the number of characters you intend to store? 3. The array name without an index is a pointer constant. What does the name of a char array point to? 4. What are the two main ways to initialize a C-style string? What is a common mistake when using the initializer list method, and what is its consequence? 5. Why is it necessary to add _CRT_SECURE_NO_WARNINGS to the preprocessor definitions in Visual Studio when working with many standard C library functions?
What is the alternative approach? 6. What is the key difference between stropy and strncpy? Why might strncpy be considered safer? 7. How does the stremp function determine if one string is "less than" another? Why can't you use the == operator to compare two C-style strings for content equality? 8. Describe the purpose and parameters of the strok function. How do you get all tokens from a string? 9. What do the functions strchr and strrchr do? How do they differ? 10. Explain what the strstr function returns and what it is commonly used for. 11. What is the purpose of the functions in the < cctype> header? Give three examples of such functions and their use. 12. What is the difference between tolower(c) and_tolower(c)? When should you use each? 1. What is a function in C++? Name the three core benefits of using functions in a program. 2. What is the difference between a function declaration (prototype) and a function definition? Provide examples. 3. What is a function signature? Which elements are part of the signature, and which are not? 4. What methods of passing parameters to a function do you know? Explain the difference between pass-by-value, pass-by-pointer, and pass-by-reference. 5. Why can't you pass an array to a function by value? What is the correct way to pass an array to a function? 6. What is variable scope? How is it related to functions? 7. How does a function return a value? What happens if a function with a non-void return type does not return a value on all control paths? 8. Can you use multiple return statements in a single function? Provide an example. 9. What is function overloading? What is it based on? 10. How is interaction between functions organized in a program? Provide an example program with several functions. 11. What are default parameters? How are they specified, and in what cases are they useful? 12. How can you prevent a function from modifying the data passed to it? What modifiers are used for this? 13. What is recursion? Provide an example of a recursive function. 14. What common errors occur when working with functions? How can they be avoided? 15. How do you use pointers to functions? Provide an example of declaring and calling a function through a pointer. 用中文回答
11-18
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值