Educational Codeforces Round 103 (Rated for Div. 2)

本文介绍了三个算法问题的解决方案。A题是关于寻找使得数组元素和能被k整除的最小最大元素,通过分析n和k的关系给出解答。B题涉及价格变化与通胀系数,通过调整价格变化使通胀系数不超过k%,并求最小调整总和。C题是寻找由多个链组成的图中最长简单循环的长度,通过链间的连接规则计算得出。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A. K-divisible Sum

You are given two integers n and k.
You should create an array of n positive integers a1,a2,…,an such that the sum (a1+a2+⋯+an) is divisible by k and maximum element in a is minimum possible.
What is the minimum possible maximum element in a?
Input
The first line contains a single integer t (1≤t≤1000) — the number of test cases.
The first and only line of each test case contains two integers n and k (1≤n≤109; 1≤k≤109).
Output
For each test case, print one integer — the minimum possible maximum element in array a such that the sum (a1+⋯+an) is divisible by k.

代码:

#include<iostream>
#include<queue>
#include<stack>
#include<cstring>
#include<stdlib.h>
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<map>
#include<stdio.h>
#include<string>
#include<math.h>
#define LL long long
using namespace std;
#define MAXN 20000001
#define inf 100000001
#define sd1(i) scanf("%d", &i)
#define sl1(i) scanf("%lld", &i)
#define sd2(i, j) scanf("%d%d", &i, &j)
#define sl2(i, j) scanf("%lld%lld", &i, &j)
#define sd3(i, j, k) scanf("%d%d%d", &i, &j, &k)
#define For(i, j, n) for(int i = j; i < n; i++)
#define For_(i, j, n) for(int i = j; i > n; i--)
#define ms(x, n) memset(x,n,sizeof(x));

int T;
int main(){
    sd1(T);
    while(T--){
        LL n, k;
        sd2(n, k);
        LL ans = 0;
        if(k >= n){
            if(k % n == 0) ans = k / n;
            else  ans = k / n + 1;
        }
        else{
            if(n % k == 0){
                ans = 1;
            }
            else{
                ans = 2;
            }
        }
        cout << ans << endl;
    }
    system("pause");
    return 0;
}

B. Inflation

You have a statistic of price changes for one product represented as an array of n positive integers p0,p1,…,pn−1, where p0 is the initial price of the product and pi is how the price was increased during the i-th month.
Using these price changes you are asked to calculate the inflation coefficients for each month as the ratio of current price increase pi to the price at the start of this month (p0+p1+⋯+pi−1).
Your boss said you clearly that the inflation coefficients must not exceed k %, so you decided to increase some values pi in such a way, that all pi remain integers and the inflation coefficients for each month don’t exceed k %.
You know, that the bigger changes — the more obvious cheating. That’s why you need to minimize the total sum of changes.
What’s the minimum total sum of changes you need to make all inflation coefficients not more than k %?
Input
The first line contains a single integer t (1≤t≤1000) — the number of test cases.
The first line of each test case contains two integers n and k (2≤n≤100; 1≤k≤100) — the length of array p and coefficient k.
The second line of each test case contains n integers p0,p1,…,pn−1 (1≤pi≤109) — the array p.
Output
For each test case, print the minimum total sum of changes you need to make all inflation coefficients not more than k %.

思路:

从前向后模拟即可,可以理解为将每次加的值都加到第一个上

代码:


int T;
LL a[MAXN];
LL sum[MAXN];
int main(){
    sd1(T);
    while(T--){
        ms(sum, 0);
        int n, k;
        sd2(n, k);
        LL summ = 0;
        for(int i = 1; i <= n; i++){
            sl1(a[i]);
            summ += a[i];
        }
        sum[1] = 0;
        LL ans = 0;
        for(int i = 2; i <= n; i++){
            sum[i] = sum[i-1] + a[i-1];
            if( (double)a[i]/(double)sum[i] * 100 > k ){
                sum[i] = ceil((double)a[i] / k * 100);
            }
        }
        cout << sum[n] - summ + a[n] << endl;
    }
    system("pause");
    return 0;
}

C. Longest Simple Cycle

You have n chains, the i-th chain consists of ci vertices. Vertices in each chain are numbered independently from 1 to ci along the chain. In other words, the i-th chain is the undirected graph with ci vertices and (ci−1) edges connecting the j-th and the (j+1)-th vertices for each 1≤j<ci.
Now you decided to unite chains in one graph in the following way:
the first chain is skipped;
the 1-st vertex of the i-th chain is connected by an edge with the ai-th vertex of the (i−1)-th chain;
the last (ci-th) vertex of the i-th chain is connected by an edge with the bi-th vertex of the (i−1)-th chain.
Calculate the length of the longest simple cycle in the resulting graph.
A simple cycle is a chain where the first and last vertices are connected as well. If you travel along the simple cycle, each vertex of this cycle will be visited exactly once.
Input
The first line contains a single integer t (1≤t≤1000) — the number of test cases.
The first line of each test case contains the single integer n (2≤n≤105) — the number of chains you have.
The second line of each test case contains n integers c1,c2,…,cn (2≤ci≤109) — the number of vertices in the corresponding chains.
The third line of each test case contains n integers a1,a2,…,an (a1=−1; 1≤ai≤ci−1).
The fourth line of each test case contains n integers b1,b2,…,bn (b1=−1; 1≤bi≤ci−1).
Both a1 and b1 are equal to −1, they aren’t used in graph building and given just for index consistency. It’s guaranteed that the sum of n over all test cases doesn’t exceed 105.
Output
For each test case, print the length of the longest simple cycle.这里是引用

代码:


int T;
int c[MAXN], a[MAXN], b[MAXN];
int main(){
    sd1(T);
    while(T--){
        int n;
        sd1(n);
        int sum_n = 0;
        int sum = 0;
        for(int i = 0; i < n; i++){ sd1(c[i]);}
        for(int i = 0; i < n; i++){ sd1(a[i]);}
        for(int i = 0; i < n; i++){ sd1(b[i]);}
        sum_n = c[n-1];
        for(int i = n-1; i >= 1; i--){
            if(a[i] != b[i]){
                if(i == 1) {
                    sum_n += abs(a[i] - b[i]) + 1; 
                    sum = max(sum_n, sum);
                }
                else{
                    sum_n += (c[i-1] - abs(a[i] - b[i])+1);
                    sum_n = max(sum_n, c[i-1]);
                }
            }
            else{
                sum_n += 1;
                sum = max(sum_n, sum);
                if(i != 1) 
                    sum_n = c[i-1];
            }
        }
        cout << sum << endl;
    }
    system("pause");
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值