BZOJ 2154 莫比乌斯反演 Crash的数字表格
题意:∑i=1n∑j=1mlcm(i,j)\sum_{i=1}^{n}\sum_{j=1}^{m} lcm(i,j)∑i=1n∑j=1mlcm(i,j)
#include <bits/stdc++.h>
#define FOR(i,s,t) for(int i=(s);i<=(t);i++)
#define ROF(i,s,t) for(int i=(s);i>=(t);i--)
#define pb push_back
#define mp make_pair
#define eb emplace_back
#define fi first
#define se second
#define endl '\n'
using namespace std;
typedef unsigned long long ull;
typedef long long ll;
const int maxn = 1e7 + 6;
const ll mod = 20101009;
const int inf = 0x3f3f3f3f;
const ll INF = 0x3f3f3f3f3f3f3f3f;
int readInt(){
int x=0;
bool sign=false;
char c=getchar();
while(!isdigit(c)){
sign=c=='-';
c=getchar();
}
while(isdigit(c)){
x=x*10+c-'0';
c=getchar();
}
return sign?-x:x;
}
ll readLong(){
ll x=0;
bool sign=false;
char c=getchar();
while(!isdigit(c)){
sign=c=='-';
c=getchar();
}
while(isdigit(c)){
x=x*10+c-'0';
c=getchar();
}
return sign?-x:x;
}
string readString(){
string s;
char c=getchar();
while(isspace(c)){
c=getchar();
}
while(!isspace(c)){
s+=c;
c=getchar();
}
return s;
}
vector <int> pri;
int vis[maxn];
int mu[maxn];
ll n, m;
ll sum[maxn];
void getPrime(int maxn){
maxn++;
mu[1] = 1 ;
for(int i = 2; i < maxn; i++){
if (!vis[i]){
pri.pb(i);
mu[i] = -1;
}
for (int j = 0; j < pri.size() && i * pri[j] <maxn; j++){
vis[i *pri[j]] = 1;
if (i % pri[j] == 0){
mu[i * pri[j]] = 0;
break;
}
mu[i *pri[j]] = - mu[i];
}
}
for (int i = 1; i <maxn; i++ ){
sum[i] = (sum[i-1] % mod + (((ll)mu[i] * (ll)i) % mod * i) % mod) % mod;
//cout << sum[i] << endl;
}
}
ll getsum(ll n, ll m){
return ((((n + 1) * n / 2) % mod) * (((m + 1) * m / 2)% mod)) % mod;
}
ll solve (ll x, ll y){
ll res = 0;
int pos = 1;
if (x > y) swap(x, y);
for (int i = 1; i <= x; i = pos + 1){
pos = min(x/(x/i), y/(y/i));
res =(res + (sum[pos] - sum[i-1]) % mod * getsum(x/i, y/i) %mod) % mod;
}
return res % mod;
}
int main(){
n = readLong();
m = readLong();
if (n > m ) swap(n, m);
getPrime(n);
int pos = 0;
ll res = 0;
for (int i= 1; i <= n; i= pos +1){
pos = min(n/(n/i), m/(m/i));
res =(res + ((ll)(pos + i) * (ll)(pos - i + 1) / 2ll % mod) * (solve(n/ i, m / i) % mod)) % mod;
//cout << res << endl;
}
printf("%lld\n", (res + mod) % mod);
return 0;
}