[LeetCode]368. Largest Divisible Subset(自学留存)

本文介绍了一种使用动态规划算法解决寻找最大整除子集问题的方法。通过将输入数组排序,并利用动态规划来确定满足特定整除条件的最大子集。文章提供了详细的实现步骤和示例代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Given a set of distinct positive integers, find the largest subset such that every pair (Si, Sj) of elements in this subset satisfies: Si % Sj = 0 or Sj % Si = 0.

If there are multiple solutions, return any subset is fine.

Example 1:

nums: [1,2,3]

Result: [1,2] (of course, [1,3] will also be ok)

Example 2:

nums: [1,2,4,8]

Result: [1,2,4,8]

Credits:
Special thanks to @Stomach_ache for adding this problem and creating all test cases.


Personal tips: DP算法。数组排序后,假设j大于i,nums[j]%nums[i]=0,利用a[i]=j储存位置关系并保存最长子串的最小位数pos。代码如下:

class Solution {
public:
	vector<int> largestDivisibleSubset(vector<int>& nums)
	{
		if (nums.empty()) return nums;
		sort(nums.begin(), nums.end());
		int m = nums.size();
		vector<int> subset{}; vector<int> length(m, 0); vector<int> a(m, m); int max = 0,pos=0;
		for (int i = m - 1; i >= 0; i--)
		{
			for (int j = i; j < m; j++)
			{
				if (nums[j] % nums[i] == 0 && length[i] < length[j] + 1)
				{
					length[i] = length[j] + 1;
					a[i] = j;
					if (max < length[i])
					{
						max = length[i];
						pos = i;
					}
				}
			}
		}
		int next;
		subset.push_back(nums[pos]);
		while (pos < m)
		{
			next = a[pos]; if (pos == next) break;
			subset.push_back(nums[next]);
			pos = next;
		}	
		return subset;
	}
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值