cf-723C Polycarp at the Radio

本文介绍了一个播放列表优化问题,目标是最小化热门乐队表演歌曲数量间的差距,并减少播放列表的改动次数。通过计算平均值和调整乐队表演频次,实现播放列表的最优配置。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

cf-723C Polycarp at the Radio 

分析:先定义每个数字在数组中出现次数叫做这个数的频率,注意是次数。

题意:给出两个数字 n 和 m,再给出 n 个数字放在数组 a[i] 里。使数组 a 里面的数全部变为 1~m 之间的数字,并且使每个数的频率尽量大,也就是每个数的频率高于平均值。然后输出数组改变后所有数频率中的最小值 和 改变数组时改变了几次,以及改变后的数组。

可以知道平均值就是 n/m,然后在数组a中找到符合 1~m 的数字并记录下次数,如果高于平均值就再找下一个,低于平均值则记下差几个数能够到达平均值,这样可以求出改变次数。最后在数组中找到所有不符合条件的数【频率太小需要将频率大的改为这个数,大于m的需要变小】改掉

Polycarp is a music editor at the radio station. He received a playlist for tomorrow, that can be represented as a sequence a1, a2, ..., an, where ai is a band, which performs the i-th song. Polycarp likes bands with the numbers from 1 to m, but he doesn't really like others.

We define as bj the number of songs the group j is going to perform tomorrow. Polycarp wants to change the playlist in such a way that the minimum among the numbers b1, b2, ..., bm will be as large as possible.

Find this maximum possible value of the minimum among the bj (1 ≤ j ≤ m), and the minimum number of changes in the playlist Polycarp needs to make to achieve it. One change in the playlist is a replacement of the performer of the i-th song with any other group.

Input

The first line of the input contains two integers n and m (1 ≤ m ≤ n ≤ 2000).

The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 109), where ai is the performer of the i-th song.

Output

In the first line print two integers: the maximum possible value of the minimum among the bj (1 ≤ j ≤ m), where bj is the number of songs in the changed playlist performed by the j-th band, and the minimum number of changes in the playlist Polycarp needs to make.

In the second line print the changed playlist.

If there are multiple answers, print any of them.

Example
Input
4 2
1 2 3 2
Output
2 1
1 2 1 2 



Input
7 3
1 3 2 2 2 2 1
Output
2 1
1 3 3 2 2 2 1 



Input
4 4
1000000000 100 7 1000000000
Output
1 4
1 2 3 4 



Note

In the first sample, after Polycarp's changes the first band performs two songs (b1 = 2), and the second band also performs two songs (b2 = 2). Thus, the minimum of these values equals to 2. It is impossible to achieve a higher minimum value by any changes in the playlist.

In the second sample, after Polycarp's changes the first band performs two songs (b1 = 2), the second band performs three songs (b2 = 3), and the third band also performs two songs (b3 = 2). Thus, the best minimum value is 2.


#include<iostream>
#include<cstdio>
#include<cctype>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=2050;
int a[N],val[N],p[N];
int pos[2005];
int main(){
	int n,m,min_ave,min_cnt;
	memset(pos,0,sizeof(pos));
	cin>>n>>m;
	for(int i=1;i<=n;i++){
		cin>>a[i];
	}
	min_ave=n/m;
	min_cnt=0;
	for(int i=1;i<=m;i++){
		int num=0;
		for(int j=1;j<=n;j++){
			if(a[j]==i){
				pos[j]=1;
				num++;
			}
			if(num>=min_ave){
				break;
			}
		}
		if(num<min_ave){
			val[i]=min_ave-num;
			min_cnt+=val[i];
		}
	}
	int count=1;
	for(int i=1;i<=m;i++){
		for(int j=0;j<val[i];j++){
			while(pos[count]==1){
				count++;
			}
			a[count++]=i;
		}
	}
	cout<<min_ave<<" "<<min_cnt<<endl;
	for(int i=1;i<=n;i++){
		cout<<a[i]<<" ";
	}
	cout<<endl;
	return 0;
} 



内容概要:本文深入解析了扣子COZE AI编程及其详细应用代码案例,旨在帮助读者理解新一代低门槛智能体开发范式。文章从五个维度展开:关键概念、核心技巧、典型应用场景、详细代码案例分析以及未来发展趋势。首先介绍了扣子COZE的核心概念,如Bot、Workflow、Plugin、Memory和Knowledge。接着分享了意图识别、函数调用链、动态Prompt、渐进式发布及监控可观测等核心技巧。然后列举了企业内部智能客服、电商导购助手、教育领域AI助教和金融行业合规质检等应用场景。最后,通过构建“会议纪要智能助手”的详细代码案例,展示了从需求描述、技术方案、Workflow节点拆解到调试与上线的全过程,并展望了多智能体协作、本地私有部署、Agent2Agent协议、边缘计算插件和实时RAG等未来发展方向。; 适合人群:对AI编程感兴趣的开发者,尤其是希望快速落地AI产品的技术人员。; 使用场景及目标:①学习如何使用扣子COZE构建生产级智能体;②掌握智能体实例、自动化流程、扩展能力和知识库的使用方法;③通过实际案例理解如何实现会议纪要智能助手的功能,包括触发器设置、下载节点、LLM节点Prompt设计、Code节点处理和邮件节点配置。; 阅读建议:本文不仅提供了理论知识,还包含了详细的代码案例,建议读者结合实际业务需求进行实践,逐步掌握扣子COZE的各项功能,并关注其未来的发展趋势。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值