python+opencv 图像二值化

部署运行你感兴趣的模型镜像

图像二值化的方法:1、全局阈值     2、局部阈值

OpenCV中图像二值化方法:1、OTSU     2、Triangle      3、自动与手动     4、自适应阈值

import cv2 as cv
import numpy as np


# 根据选定的方法自动寻找阈值
def threshold_demo(image):
    # 灰度图像
    gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
    # 二值图像
    ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY | cv.THRESH_TRIANGLE)
    print('threshold value %s' % ret)
    cv.imshow('binary', binary)


# 局部阈值
def local_threshold(image):
    gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
    # blockSize 必须是奇数,下面设为25, 比均值大10(自己设置)就设置为黑色或者白色,在10之内的设置为另一个颜色
    dst = cv.adaptiveThreshold(gray, 255, cv.ADAPTIVE_THRESH_GAUSSIAN_C, cv.THRESH_BINARY, 25, 10)
    cv.imshow('binary', dst)


# 自适应阈值
def custom_threshold(image):
    gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
    h, w = gray.shape[:2]
    m = np.reshape(gray, [1, w*h])
    # 均值
    mean = m.sum() / (w*h)
    print('mean:', mean)
    ret, binary = cv.threshold(gray, mean, 255, cv.THRESH_BINARY)
    cv.imshow('binary', binary)


# 手动设定阈值
def threshold_demo_1(image):
    gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
    ret, binary = cv.threshold(gray, 127, 255, cv.THRESH_TRUNC)
    print('threshold value %s' % ret)
    cv.imshow('binary', binary)


src = cv.imread('C:/Users/Y/Pictures/Saved Pictures/demo.png')
cv.namedWindow('input image', cv.WINDOW_AUTOSIZE)
cv.imshow('input image', src)
custom_threshold(src)
cv.waitKey(0)
cv.destroyAllWindows()

                        原图像                                                                                   threshold_demo二值化后的图像

local_threshold二值化后的图像                                                        custom_threshold二值化后的图像

custom_threshold中的均值

threshold_demo_1二值化后的图像

您可能感兴趣的与本文相关的镜像

Python3.8

Python3.8

Conda
Python

Python 是一种高级、解释型、通用的编程语言,以其简洁易读的语法而闻名,适用于广泛的应用,包括Web开发、数据分析、人工智能和自动化脚本

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值