线段树
本来想自己YY写一发的,这样理解的也更深一些,但是不知道该从哪儿下手,后来又看了一下别人写的,
自觉惭愧,想着自己应该写不到这么好吧,所以我就不误人子弟了。转载自
http://blog.youkuaiyun.com/metalseed/article/details/8039326
一:线段树基本概念
1:概述
线段树,类似区间树,是一个完全二叉树,它在各个节点保存一条线段(数组中的一段子数组),主要用于高效解决连续区间的动态查询问题,由于二叉结构的特性,它基本能保持每个操作的复杂度为O(lgN)!
性质:父亲的区间是[a,b],(c=(a+b)/2)左儿子的区间是[a,c],右儿子的区间是[c+1,b],线段树需要的空间为数组大小的四倍
2:基本操作(demo用的是查询区间最小值)
线段树的主要操作有:
(1):线段树的构造 void build(int node, int begin, int end);
主要思想是递归构造,如果当前节点记录的区间只有一个值,则直接赋值,否则递归构造左右子树,最后回溯的时候给当前节点赋值
- #include <iostream>
- using namespace std;
- const int maxind = 256;
- int segTree[maxind * 4 + 10];
- int array[maxind];
- /* 构造函数,得到线段树 */
- void build(int node, int begin, int end)
- {
- if (begin == end)
- segTree[node] = array[begin]; /* 只有一个元素,节点记录该单元素 */
- else
- {
- /* 递归构造左右子树 */
- build(2*node, begin, (begin+end)/2);
- build(2*node+1, (begin+end)/2+1, end);
- /* 回溯时得到当前node节点的线段信息 */
- if (segTree[2 * node] <= segTree[2 * node + 1])
- segTree[node] = segTree[2 * node];
- else
- segTree[node] = segTree[2 * node + 1];
- }
- }
- int main()
- {
- array[0] = 1, array[1] = 2,array[2] = 2, array[3] = 4, array[4] = 1, array[5] = 3;
- build(1, 0, 5);
- for(int i = 1; i<=20; ++i)
- cout<< "seg"<< i << "=" <<segTree[i] <<endl;
- return 0;
- }
#include <iostream>
using namespace std;
const int maxind = 256;
int segTree[maxind * 4 + 10];
int array[maxind];
/* 构造函数,得到线段树 */
void build(int node, int begin, int end)
{
if (begin == end)
segTree[node] = array[begin]; /* 只有一个元素,节点记录该单元素 */
else
{
/* 递归构造左右子树 */
build(2*node, begin, (begin+end)/2);
build(2*node+1, (begin+end)/2+1, end);
/* 回溯时得到当前node节点的线段信息 */
if (segTree[2 * node] <= segTree[2 * node + 1])
segTree[node] = segTree[2 * node];
else
segTree[node] = segTree[2 * node + 1];
}
}
int main()
{
array[0] = 1, array[1] = 2,array[2] = 2, array[3] = 4, array[4] = 1, array[5] = 3;
build(1, 0, 5);
for(int i = 1; i<=20; ++i)
cout<< "seg"<< i << "=" <<segTree[i] <<endl;
return 0;
}
此build构造成的树如图:
(2):区间查询int query(int node, int begin, int end, int left, int right);
(其中node为当前查询节点,begin,end为当前节点存储的区间,left,right为此次query所要查询的区间)
主要思想是把所要查询的区间[a,b]划分为线段树上的节点,然后将这些节点代表的区间合并起来得到所需信息
比如前面一个图中所示的树,如果询问区间是[0,2],或者询问的区间是[3,3],不难直接找到对应的节点回答这一问题。但并不是所有的提问都这么容易回答,比如[0,3],就没有哪一个节点记录了这个区间的最小值。当然,解决方法也不难找到:把[0,2]和[3,3]两个区间(它们在整数意义上是相连的两个区间)的最小值“合并”起来,也就是求这两个最小值的最小值,就能求出[0,3]范围的最小值。同理,对于其他询问的区间,也都可以找到若干个相连的区间,合并后可以得到询问的区间。
- int query(int node, int begin, int end, int left, int right)
- {
- int p1, p2;
- /* 查询区间和要求的区间没有交集 */
- if (left > end || right < begin)
- return -1;
- /* if the current interval is included in */
- /* the query interval return segTree[node] */
- if (begin >= left && end <= right)
- return segTree[node];
- /* compute the minimum position in the */
- /* left and right part of the interval */
- p1 = query(2 * node, begin, (begin + end) / 2, left, right);
- p2 = query(2 * node + 1, (begin + end) / 2 + 1, end, left, right);
- /* return the expect value */
- if (p1 == -1)
- return p2;
- if (p2 == -1)
- return p1;
- if (p1 <= p2)
- return p1;
- return p2;
- }
int query(int node, int begin, int end, int left, int right)
{
int p1, p2;
/* 查询区间和要求的区间没有交集 */
if (left > end || right < begin)
return -1;
/* if the current interval is included in */
/* the query interval return segTree[node] */
if (begin >= left && end <= right)
return segTree[node];
/* compute the minimum position in the */
/* left and right part of the interval */
p1 = query(2 * node, begin, (begin + end) / 2, left, right);
p2 = query(2 * node + 1, (begin + end) / 2 + 1, end, left, right);
/* return the expect value */
if (p1 == -1)
return p2;
if (p2 == -1)
return p1;
if (p1 <= p2)
return p1;
return p2;
}
可见,这样的过程一定选出了尽量少的区间,它们相连后正好涵盖了整个[left,right],没有重复也没有遗漏。同时,考虑到线段树上每层的节点最多会被选取2个,一共选取的节点数也是O(log n)的,因此查询的时间复杂度也是O(log n)。
线段树并不适合所有区间查询情况,它的使用条件是“相邻的区间的信息可以被合并成两个区间的并区间的信息”。即问题是可以被分解解决的。
(3):区间或节点的更新 及 线段树的动态维护update (这是线段树核心价值所在,节点中的标记域可以解决N多种问题)
动态维护需要用到标记域,延迟标记等。
a:单节点更新
- void Updata(int node, int begin, int end, int ind, int add)/*单节点更新*/
- {
- if( begin == end )
- {
- segTree[node] += add;
- return ;
- }
- int m = ( left + right ) >> 1;
- if(ind <= m)
- Updata(node * 2,left, m, ind, add);
- else
- Updata(node * 2 + 1, m + 1, right, ind, add);
- /*回溯更新父节点*/
- segTree[node] = min(segTree[node * 2], segTree[node * 2 + 1]);
- }
void Updata(int node, int begin, int end, int ind, int add)/*单节点更新*/
{
if( begin == end )
{
segTree[node] += add;
return ;
}
int m = ( left + right ) >> 1;
if(ind <= m)
Updata(node * 2,left, m, ind, add);
else
Updata(node * 2 + 1, m + 1, right, ind, add);
/*回溯更新父节点*/
segTree[node] = min(segTree[node * 2], segTree[node * 2 + 1]);
}
b:区间更新(线段树中最有用的)
需要用到延迟标记,每个结点新增加一个标记,记录这个结点是否被进行了某种修改操作(这种修改操作会影响其子结点)。对于任意区间的修改,我们先按照查询的方式将其划分成线段树中的结点,然后修改这些结点的信息,并给这些结点标上代表这种修改操作的标记。在修改和查询的时候,如果我们到了一个结点p,并且决定考虑其子结点,那么我们就要看看结点p有没有标记,如果有,就要按照标记修改其子结点的信息,并且给子结点都标上相同的标记,同时消掉p的标记。(优点在于,不用将区间内的所有值都暴力更新,大大提高效率,因此区间更新是最优用的操作)
void Change来自dongxicheng.org
- void Change(node *p, int a, int b) /* 当前考察结点为p,修改区间为(a,b]*/
- {
- if (a <= p->Left && p->Right <= b)
- /* 如果当前结点的区间包含在修改区间内*/
- {
- ...... /* 修改当前结点的信息,并标上标记*/
- return;
- }
- Push_Down(p); /* 把当前结点的标记向下传递*/
- int mid = (p->Left + p->Right) / 2; /* 计算左右子结点的分隔点
- if (a < mid) Change(p->Lch, a, b); /* 和左孩子有交集,考察左子结点*/
- if (b > mid) Change(p->Rch, a, b); /* 和右孩子有交集,考察右子结点*/
- Update(p); /* 维护当前结点的信息(因为其子结点的信息可能有更改)*/
- }
void Change(node *p, int a, int b) /* 当前考察结点为p,修改区间为(a,b]*/
{
if (a <= p->Left && p->Right <= b)
/* 如果当前结点的区间包含在修改区间内*/
{
...... /* 修改当前结点的信息,并标上标记*/
return;
}
Push_Down(p); /* 把当前结点的标记向下传递*/
int mid = (p->Left + p->Right) / 2; /* 计算左右子结点的分隔点
if (a < mid) Change(p->Lch, a, b); /* 和左孩子有交集,考察左子结点*/
if (b > mid) Change(p->Rch, a, b); /* 和右孩子有交集,考察右子结点*/
Update(p); /* 维护当前结点的信息(因为其子结点的信息可能有更改)*/
}
本文详细介绍线段树的基本概念、构造方法、查询与更新操作。通过示例代码展示如何实现线段树及其应用。

548

被折叠的 条评论
为什么被折叠?



