Physicists Invent a Chip That Stores a Photon's Quantum State

瑞士科学家团队发明了一种能够在钇铝石榴石晶体中存储光子量子状态长达1微秒的固态设备。这项技术有助于克服当前量子加密网络的距离限制,为全球量子通信网络铺平道路。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Physicists Invent a Chip That Stores a Photon's Quantum State By Saswato R. Das
First Published December 2008
A step toward the "quantum repeaters" needed to make long-distance quantum-cryptography networks
 
 

PHOTO: Nicolas Gisin

16 December 2008—Physicists in Switzerland led by Nicolas Gisin of the University of Geneva reported last week in Nature that they have made a solid-state device capable of storing photons for as long as 1 microsecond. The invention will aid in the development of light-based quantum-cryptography networks, which are theoretically impervious to hacking but are currently limited in range to a few dozen kilometers, primarily because of a lack of a suitable way to store the quantum state of photons.

“Photons are very fragile,” Gisin says. “We are now able to play with a photon, put it in a quantum fridge, and retrieve it a bit later.”

While similar quantum interactions between light and matter that can be used as rudimentary memory devices have been demonstrated before, those demonstrations have involved mainly gases of atoms chilled to near absolute zero and difficult-to-execute schemes to trap the light. Earlier this month, a group of researchers at the Georgia Institute of Technology announced that they had stored quantum information for a record 32 milliseconds in very cold rubidium atoms confined in an optical trap. Even though it doesn’t store information for as long as the Georgia Tech technique, the Swiss method should be more practical because it relies on a solid-state device and doesn’t need to be cooled as near to absolute zero. Many experts say that the Swiss method has the potential to revolutionize quantum information networks.

Raymond Laflamme, director of the Institute for Quantum Computing at the University of Waterloo, in Canada, called the Swiss work “an important stepping stone for quantum communication, a critical building block on which to build quantum repeaters, the missing link to make quantum communication global and pervasive.”

PHOTO: Nicolas Gisin

COLD STORAGE: The quantum memory chip is kept in a 3 Kelvin chiller [blue] awaiting photons [yellow optical fiber].

Quantum repeaters will be an essential component for long-range quantum information networks because photons degenerate—their quantum state changes—as they travel and need to be regenerated periodically in a way that preserves their original information. No one has been able to make a reliable quantum repeater yet. One of the prerequisites for such a device is a quantum memory that can store photons (and their quantum state) without destroying entanglement. Entanglement, a property important to quantum networks, allows two photons to be linked in such a way that, if someone measures one of the photons, the quantum state of the other becomes known as well. When a photon travels through optical fiber, entanglement degeneration occurs by approximately 300 kilometers.

In October, the city of Vienna switched on the largest quantum information network in existence, spanning roughly 200 kilometers. Anything much beyond that is going to be a challenge without quantum repeaters. The Swiss group thinks its device may be a way forward.

What Gisin and his colleagues—Mikael Afzelius, Hugues de Riedmatten, Christoph Simon, and Matthias Staudt—essentially did was to find a way to trap a photon in a collection of 10 million neodymium atoms embedded in an yttrium orthovanadate crystal, which was cooled to 3 degrees kelvin. When entangled photons from a diode laser were beamed into the crystal, they were stored for up to 1 microsecond, “and the released photons were entangled as well,” says Gisin.

An immediate goal is to increase the storage time to milliseconds, a period far more useful for quantum networks, says Gisin. The efficiency of the storage is also pretty low, only a few percent of photons are retained, which the Swiss team is trying to increase.

Carl Williams, chief of the atomic physics division at the National Institute of Standards and Technology, in Gaithersburg, Md., points out that the first experiments in quantum communications tend to have low efficiencies, which are typically quickly improved upon.

“This is a very elegant new experiment,” Williams says. With Gisin’s approach, quantum memories “might be much more easily manufactured.”

内容概要:本文详细阐述了DeepSeek大模型在服装行业的应用方案,旨在通过人工智能技术提升服装企业的运营效率和市场竞争力。文章首先介绍了服装行业的现状与挑战,指出传统模式难以应对复杂的市场变化。DeepSeek大模型凭借其强大的数据分析和模式识别能力,能够精准预测市场趋势、优化供应链管理、提升产品设计效率,并实现个性化推荐。具体应用场景包括设计灵感生成、自动化设计、虚拟试衣、需求预测、生产流程优化、精准营销、智能客服、用户体验提升等。此外,文章还探讨了数据安全与隐私保护的重要性,以及技术实施与集成的具体步骤。最后,文章展望了未来市场扩展和技术升级的方向,强调了持续优化和合作的重要性。 适用人群:服装行业的企业管理层、技术负责人、市场和销售团队、供应链管理人员。 使用场景及目标:①通过市场趋势预测和用户偏好分析,提升设计效率和产品创新;②优化供应链管理,减少库存积压和生产浪费;③实现精准营销,提高客户满意度和转化率;④通过智能客服和虚拟试衣技术,提升用户体验;⑤确保数据安全和隐私保护,建立用户信任。 阅读建议:此资源不仅涵盖技术实现的细节,还涉及业务流程的优化和管理策略的调整,建议读者结合实际业务需求,重点关注与自身工作相关的部分,并逐步推进技术的应用和创新。
### 回答1: 《物理学中的数学方法》(Mathematical Methods for Physicists)是一本经典的物理学教材,其PDF版本广泛被使用和传阅。该书的主要目标是帮助物理学家掌握和应用数学工具来解决物理问题。 这本书涵盖了物理学中常用的各类数学方法,包括线性代数、微积分、变分法、常微分方程、偏微分方程、特殊函数、积分变换、群论等等。它提供了丰富的数学背景知识,以及物理问题和数学方法的联系,帮助读者理解和解决物理学中的数学问题。 《物理学中的数学方法》的PDF版本使得学生和研究者能够方便地获取该书的电子版,随时随地进行学习和查阅。与传统纸质书籍相比,PDF版本具有便携性和高效性的特点,可以在电脑、平板电脑或手机上随时浏览和搜索相关内容。 通过使用《物理学中的数学方法》这本教材的PDF版本,学生可以自主学习和掌握数学方法,并且能够更加灵活地将数学方法应用于物理问题的求解中。此外,PDF版本也提供了书中习题的答案,方便读者检查和巩固知识。 总之,物理学中的数学方法是物理学教育中的重要工具书,其PDF版本为学生和研究者提供了便捷的学习和参考资料,帮助他们更好地理解和应用数学方法解决物理问题。 ### 回答2: 《物理学家的数学方法》是一本广泛应用于物理学领域的数学方法的教材。它为物理学研究者提供了一个全面和系统的工具箱,使他们能够理解和解决物理学中的问题。 这本教材详细介绍了许多涉及物理学的数学方法,包括常微分方程、偏微分方程、函数变换和积分变换等。它强调了这些数学方法在物理学中的实际应用,并通过大量的实例和习题引导学生理解和应用这些方法。 《物理学家的数学方法》还包括了一些高级的数学概念和技巧,如变分法和特殊函数等。这些概念和技巧在处理物理学中的特定问题时非常有用,例如量子力学和电磁学。 该教材的优点在于它的详细性和实用性。它适用于各个级别的物理学学生,从本科生到研究生和专业物理学家。它的例子和习题涵盖了各种不同的物理学领域,包括力学、热力学、电磁学和量子力学。 总之,《物理学家的数学方法》是一本非常有价值的教材,对于物理学研究者来说是一本理论和实践相结合的参考书。它提供了一系列数学方法,帮助物理学家解决各种实际问题,并深入理解物理学的基本原理和理论。 ### 回答3: "Mathematical Methods for Physicists"(数学物理学方法)是一本非常重要的数学物理学教材。它是法国学者George B. Arfken和德国学者Hans J. Weber共同编写的,并于2005年首次出版。这本书主要介绍了数学在物理学中的应用和数学工具的使用,是一本介绍数学物理学基础知识的教材。 该教材综合了数学和物理学的内容,涵盖了微积分、矩阵代数、微分方程、复变函数、积分变换等数学学科的知识。书中的内容深入浅出,适合物理学专业的本科生和研究生学习和使用。 这本教材的优点在于它将抽象的数学概念与物理学问题相结合,帮助学生理解和应用数学方法解决物理学问题。每个章节都有大量的例题和习题,以帮助读者巩固和应用所学的数学方法。 此外,该教材还提供了丰富的图表和图示,以直观地展示数学方法在物理学中的应用。这有助于学生形成对数学物理学概念的更好理解和直观认识。 总之,《数学物理学方法》是一本经典的数学物理学教材,对于物理学专业的学生和研究人员来说是一本不可或缺的参考书。通过学习这本教材,读者可以掌握数学方法在物理学中的应用,提高解决物理学问题的能力,为进一步的学习和研究奠定坚实的数学基础。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值