常用函数记录(更新中 2023-3-23)

本文记录了在读代码时遇到的一些重要函数,包括PyTorch中的torch.gt()用于比较,FlopCountAnalysis计算模型FLOPs,torch.numel()获取元素数量,torch.cuda.synchronize()等待GPU完成操作,torch.nn.init初始化模型参数,torch.amp实现混合精度训练,numpy的np.percentile()计算百分位数,Python字符串的str.startswith()进行前缀匹配,multiprocessing的mp.Process创建进程,sklearn的metrics.roc_auc_score计算ROC_AUC,以及tensorboard的summarywriter.add_scalar()添加标量日志。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

记录汇总一下读code过程中遇到的函数。

  • torch

torch.gt(): greater than

FlopCountAnalysis(): count flops(evaluating model flops)

torch.numel(): number of elements

torch.cuda.synchronize(gpu): wait for gpu to finish kernels(used in timing)

torch.lazylinear(): needs to be initialized in first call of forward(), needs to specify out_features

torch.nn.init: a bunch of initializations of model parameters

torch.amp: automatic mixed precision(use GradScale to prevent gradient from underflow)

torch.flatten(): flatten a tensor, may start from a given dimension

silu(): Swish activation function

torch.multiply(): alias for torch.mul(), multiplication with broadcasting

  • numpy

np.percentile(): find percentile in an array, used for elinimating outliers

  • python string

str.startswith(): prefix matching

  • multiprocessing

mp.Manager(): generates a space for shared instances.

mp.Process(target, args): create process which executes function "target", with arguments args

process.start(): start a process

process.join(): 

  • sklearn

metrics.roc_auc_score: compute the Area Under the Receiver Operating Characteristic Curve (ROC AUC) from prediction scores.

  • tensorboard

summarywriter.add_scalar(): 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值