二叉树理论基础
需要了解 二叉树的种类,存储方式,遍历方式 以及二叉树的定义
二叉树的种类
在我们解题过程中二叉树有两种主要的形式:满二叉树和完全二叉树。
满二叉树
完全二叉树
完全二叉树的定义如下:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置。若最底层为第 h 层(h从1开始),则该层包含 1~ 2^(h-1) 个节点
前面的都没有数值,没有一些对应的关系
二叉搜索树
前面介绍的树,都没有数值的,而二叉搜索树是有数值的了,二叉搜索树是一个有序树。
- 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值;
- 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;
- 它的左、右子树也分别为二叉排序树
平衡二叉搜索树
平衡二叉搜索树:又被称为AVL(Adelson-Velsky and Landis)树,且具有以下性质:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。
存储方式
一般就链式存储和数组存储。
遍历方式:
一般是深度优先遍历和广度优先遍历。
- 深度优先遍历:先往深走,遇到叶子节点再往回走。
- 广度优先遍历:一层一层的去遍历。
- 深度优先遍历
- 前序遍历(递归法,迭代法)
- 中序遍历(递归法,迭代法)
- 后序遍历(递归法,迭代法)
- 广度优先遍历
- 层次遍历(迭代法)
二叉树的定义
这里是链式存储:
struct TreeNode{ int val; TreeNode* left; TreeNode* right; TreeNode(int x): val(x), left(NULL), right(NULL) {} };
二叉树递归遍历
主要是前序、后序、中序遍历,这个前中后就是看中间节点的遍历顺序。
1、前序
就是中 - 左 - 右这个遍历顺序。
class Solution { public: void traversal(TreeNode* cur, vector<int>& vec) { if (cur == NULL) return; vec.push_back(cur->val); // 中 traversal(cur->left, vec); // 左 traversal(cur->right, vec); // 右 } vector<int> preorderTraversal(TreeNode* root) { vector<int> result; traversal(root, result); return result; } };2、后序
左 - 右 - 中
void traversal(TreeNode* cur, vector<int>& vec) { if (cur == NULL) return; traversal(cur->left, vec); // 左 traversal(cur->right, vec); // 右 vec.push_back(cur->val); // 中 }3、中序
左 - 中 - 右
void traversal(TreeNode* cur, vector<int>& vec) { if (cur == NULL) return; traversal(cur->left, vec); // 左 vec.push_back(cur->val); // 中 traversal(cur->right, vec); // 右 }
迭代遍历(还是迭代有意思)
1、前序遍历
前序遍历是中左右,每次先处理的是中间节点,那么先将根节点放入栈中,然后将右孩子加入栈,再加入左孩子。
为什么要先加入 右孩子,再加入左孩子呢? 因为这样出栈的时候才是中左右的顺序。
class Solution { public: vector<int> preorderTraversal(TreeNode* root) { stack<TreeNode*> st; vector<int> result; if (root == NULL) return result; st.push(root); while (!st.empty()) { TreeNode* node = st.top(); // 中 st.pop(); result.push_back(node->val); if (node->right) st.push(node->right); // 右(空节点不入栈) if (node->left) st.push(node->left); // 左(空节点不入栈) } return result; } };2、中序遍历
class Solution { public: vector<int> inorderTraversal(TreeNode* root) { vector<int> result; stack<TreeNode*> st; TreeNode* cur = root; while (cur != NULL || !st.empty()) { if (cur != NULL) { // 指针来访问节点,访问到最底层 st.push(cur); // 将访问的节点放进栈 cur = cur->left; // 左 } else { cur = st.top(); // 从栈里弹出的数据,就是要处理的数据(放进result数组里的数据) st.pop(); result.push_back(cur->val); // 中 cur = cur->right; // 右 } } return result; } };3、后序遍历
再来看后序遍历,先序遍历是中左右,后续遍历是左右中,那么我们只需要调整一下先序遍历的代码顺序,就变成中右左的遍历顺序,然后在反转result数组,输出的结果顺序就是左右中了。
class Solution { public: vector<int> postorderTraversal(TreeNode* root) { stack<TreeNode*> st; vector<int> result; if (root == NULL) return result; st.push(root); while (!st.empty()) { TreeNode* node = st.top(); st.pop(); result.push_back(node->val); if (node->left) st.push(node->left); // 相对于前序遍历,这更改一下入栈顺序 (空节点不入栈) if (node->right) st.push(node->right); // 空节点不入栈 } reverse(result.begin(), result.end()); // 将结果反转之后就是左右中的顺序了 return result; } };
本文介绍了二叉树的基本概念,包括满二叉树和完全二叉树的定义,以及二叉搜索树和平衡二叉搜索树的特点。重点讲解了存储方式(链式和数组)和遍历方式(深度优先、广度优先和递归/迭代遍历),如前序、中序和后序遍历的实现方法。




2352

被折叠的 条评论
为什么被折叠?



