COUNTING, PERMUTATIONS, AND COMBINATIONS
PART 1 Counting principle and factorial (计数原理与阶乘)
Part 4 Combinatorics and probability
Part 5 Conditional probability vs. Total probability vs. Bayesian probability
PART 1 Counting principle and factorial (计数原理与阶乘)
1. Factorial: the factorial of a positive integer , denoted as
, is the product of all positive integers less than or equal to
.
(1)
(2)
2. Counting principle: there are two basic principles of counting:
(1) Addition principle: if one event can occur in ways and a second event with no common outcomes can occur in
ways, then the first or second event can occur in
ways.
【加法原理】如果一个目标可以在 种不同情况下完成,第
种情况又有
种不同方式来实现,那么实现这个目标总共有
种方法。
【注意事项】
- 每种方式都能实现目标,不依赖于其他条件
- 每种情况内任两种方式都不同时存在
- 不同情况之间没有相同方式存在
[EXAMPLE] There are 2 vegetarian entrée options and 5 meat entrée options on a dinner menu. What is the total number of entrée options?
[ANSWER] 5+2=7
(2) Multiplication principle: if one event can occur in ways and a second event can occur in
ways after the first event has occurred, then the two events can occur in
ways. This is also known as the Fundamental Counting Principle.
【乘法原理】如果实现一个目标必须经过 个步骤,第
步又可以有
种不同方式来实现, 那么实现这个目标总共有种
方法。
【注意事项】
- 步骤可以分出先后顺序,每一步骤对实现目标是必不可少的;
- 每步的方式具有独立性,不受其他步骤影响;
- 每步所取的方式不同,不会得出(整体的)相同方式。
[EXAMPLE] Diane packed 2 skirts, 4 blouses, and a sweater for her business trip. She will need to choose a skirt and a blouse for each outfit and decide whether to wear the sweater. Use the Multiplication Principle to find the total number of possible outfits.
[ANSWER]
Part 2 Permutations (排列)
1. 排列: 一般地,从 个不同元素中取出
个元素,按照一定的顺序排成一列,叫做从
个元素中取出
个元素的一个排列(permutation)。特别地,当
时,这个排列被称作全排列(all permutation)。
2.
Part 3 Combinations (组合)
1. 一般地,从 个不同的元素中,任取