HDOJ 1087 Super Jumping! Jumping! Jumping!

本文介绍了一款名为SuperJumping的游戏,并提出了一种基于动态规划算法来计算玩家能够获得的最大得分的方法。通过定义状态转移方程,该算法能够在给定的棋子列表中找出最优路径。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Super Jumping! Jumping! Jumping!

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 33884    Accepted Submission(s): 15351


Problem Description
Nowadays, a kind of chess game called “Super Jumping! Jumping! Jumping!” is very popular in HDU. Maybe you are a good boy, and know little about this game, so I introduce it to you now.



The game can be played by two or more than two players. It consists of a chessboard(棋盘)and some chessmen(棋子), and all chessmen are marked by a positive integer or “start” or “end”. The player starts from start-point and must jumps into end-point finally. In the course of jumping, the player will visit the chessmen in the path, but everyone must jumps from one chessman to another absolutely bigger (you can assume start-point is a minimum and end-point is a maximum.). And all players cannot go backwards. One jumping can go from a chessman to next, also can go across many chessmen, and even you can straightly get to end-point from start-point. Of course you get zero point in this situation. A player is a winner if and only if he can get a bigger score according to his jumping solution. Note that your score comes from the sum of value on the chessmen in you jumping path.
Your task is to output the maximum value according to the given chessmen list.
 

Input
Input contains multiple test cases. Each test case is described in a line as follow:
N value_1 value_2 …value_N
It is guarantied that N is not more than 1000 and all value_i are in the range of 32-int.
A test case starting with 0 terminates the input and this test case is not to be processed.
 

Output
For each case, print the maximum according to rules, and one line one case.
 

Sample Input
3 1 3 2 4 1 2 3 4 4 3 3 2 1 0
 

Sample Output
4 10 3
 

Author
lcy
 

这个题其实啰嗦了那么多就是让求最大和。

主要是把状态转移方程整出来吧,dp实在奇妙……感觉我脑子不太能跟得上=。=


题解:转移方程是:dp[j]=max(dp[j],dp[i]+a[j])

每一次往后移一个j,就把它之前所有的数再走一遍,看看它之前的序列有多少符合条件。具体过程可以调试,比较容易懂。


#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
#define N 1111
int a[N],dp[N];
int main()
{
	int n;
	int i,j;
	while(scanf("%d",&n),n)
	{
		for(i=0;i<n;i++)
		{
			scanf("%d",&a[i]);
			dp[i]=a[i];	
		}
		for(i=0;i<n;i++)
		{
			for(j=i+1;j<n;j++)
			{
				if(a[j]>a[i])
					dp[j]=max(dp[j],dp[i]+a[j]);
			}
		}
		int maxx=0;
		for(i=0;i<n;i++)
			maxx=max(maxx,dp[i]);
		printf("%d\n",maxx);
	}
	return 0;
}



内容概要:该PPT详细介绍了企业架构设计的方法论,涵盖业务架构、数据架构、应用架构和技术架构四大核心模块。首先分析了企业架构现状,包括业务、数据、应用和技术四大架构的内容和关系,明确了企业架构设计的重要性。接着,阐述了新版企业架构总体框架(CSG-EAF 2.0)的形成过程,强调其融合了传统架构设计(TOGAF)和领域驱动设计(DDD)的优势,以适应数字化转型需求。业务架构部分通过梳理企业级和专业级价值流,细化业务能力、流程和对象,确保业务战略的有效落地。数据架构部分则遵循五大原则,确保数据的准确、一致和高效使用。应用架构方面,提出了分层解耦和服务化的设计原则,以提高灵活性和响应速度。最后,技术架构部分围绕技术框架、组件、平台和部署节点进行了详细设计,确保技术架构的稳定性和扩展性。 适合人群:适用于具有一定企业架构设计经验的IT架构师、项目经理和业务分析师,特别是那些希望深入了解如何将企业架构设计与数字化转型相结合的专业人士。 使用场景及目标:①帮助企业和组织梳理业务流程,优化业务能力,实现战略目标;②指导数据管理和应用开发,确保数据的一致性和应用的高效性;③为技术选型和系统部署提供科学依据,确保技术架构的稳定性和扩展性。 阅读建议:此资源内容详尽,涵盖企业架构设计的各个方面。建议读者在学习过程中,结合实际案例进行理解和实践,重点关注各架构模块之间的关联和协同,以便更好地应用于实际工作中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值