极链ai云使用RTX3090报错:RuntimeError: Could not run ‘torchvision::nms‘ with arguments from the ‘CUDA

使用极链ai云配置好的Pytorch框架跑Yolov5的时候,会出现RuntimeError: Could not run ‘torchvision::nms’ with arguments from the 'CUDA的错误。
在这里插入图片描述
经过查询,是因为torch、torchvision和CUDA版本的问题,后来使用该文章中添加链接描述的配置解决了问题。(自己选用的是CUDA11.0,刚好是一致的!!)

# CUDA 11.0
pip install torch==1.7.1+cu110 torchvision==0.8.2+cu110 torchaudio==0.7.2 -f 
D:\anaconda\envs\mamba\python.exe E:\ultralytics-v8.3.63\ultralytics\models\yolo\pwcmamba\ceshi.py WARNING ⚠️ no model scale passed. Assuming scale='n'. 解析第0层,from=-1,当前ch列表长度=1 解析第0层后,save列表:[] 解析第1层,from=-1,当前ch列表长度=1 解析第1层后,save列表:[] 解析第2层,from=-1,当前ch列表长度=2 解析第2层后,save列表:[] 解析第3层,from=-1,当前ch列表长度=3 解析第3层后,save列表:[] 解析第4层,from=-1,当前ch列表长度=4 解析第4层后,save列表:[] 解析第5层,from=-1,当前ch列表长度=5 解析第5层后,save列表:[] 解析第6层,from=-1,当前ch列表长度=6 解析第6层后,save列表:[] 解析第7层,from=-1,当前ch列表长度=7 解析第7层后,save列表:[] 解析第8层,from=-1,当前ch列表长度=8 解析第8层后,save列表:[] 解析第9层,from=-1,当前ch列表长度=9 解析第9层后,save列表:[] 解析第10层,from=-1,当前ch列表长度=10 解析第10层后,save列表:[] 解析第11层,from=-1,当前ch列表长度=11 解析第11层后,save列表:[] 解析第12层,from=[-1, 6],当前ch列表长度=12 Concat层12:将历史层6加入save列表 解析第12层后,save列表:[6] 解析第13层,from=-1,当前ch列表长度=13 解析第13层后,save列表:[6] 解析第14层,from=-1,当前ch列表长度=14 解析第14层后,save列表:[6] 解析第15层,from=-1,当前ch列表长度=15 解析第15层后,save列表:[6] 解析第16层,from=-1,当前ch列表长度=16 解析第16层后,save列表:[6] 解析第17层,from=[-1, 4],当前ch列表长度=17 Concat层17:将历史层4加入save列表 解析第17层后,save列表:[4, 6] 解析第18层,from=-1,当前ch列表长度=18 解析第18层后,save列表:[4, 6] 解析第19层,from=-1,当前ch列表长度=19 解析第19层后,save列表:[4, 6] 解析第20层,from=-1,当前ch列表长度=20 解析第20层后,save列表:[4, 6] 解析第21层,from=[-1, 14],当前ch列表长度=21 Concat层21:将历史层14加入save列表 解析第21层后,save列表:[4, 6, 14] 解析第22层,from=-1,当前ch列表长度=22 解析第22层后,save列表:[4, 6, 14] 解析第23层,from=-1,当前ch列表长度=23 解析第23层后,save列表:[4, 6, 14] 解析第24层,from=-1,当前ch列表长度=24 解析第24层后,save列表:[4, 6, 14] 解析第25层,from=[-1, 9],当前ch列表长度=25 Concat层25:将历史层9加入save列表 解析第25层后,save列表:[4, 6, 9, 14] 解析第26层,from=-1,当前ch列表长度=26 解析第26层后,save列表:[4, 6, 9, 14] 解析第27层,from=-1,当前ch列表长度=27 解析第27层后,save列表:[4, 6, 9, 14] 解析第28层,from=[19, 23, 27],当前ch列表长度=28 层28:将from列表中的19加入save列表 层28:将from列表中的23加入save列表 层28:将from列表中的27加入save列表 解析第28层后,save列表:[4, 6, 9, 14, 19, 23, 27] Layer 0: Conv, input device: cuda:0 Layer 0: Conv, output device: cuda:0 Layer 1: Conv, input device: cuda:0 Layer 1: Conv, output device: cuda:0 Layer 2: C2f, input device: cuda:0 Layer 2: C2f, output device: cuda:0 Layer 3: Conv, input device: cuda:0 Layer 3: Conv, output device: cuda:0 Layer 4: C2f, input device: cuda:0 Layer 4: C2f, output device: cuda:0 Layer 5: Conv, input device: cuda:0 Layer 5: Conv, output device: cuda:0 Layer 6: C2f, input device: cuda:0 Layer 6: C2f, output device: cuda:0 Layer 7: Conv, input device: cuda:0 Layer 7: Conv, output device: cuda:0 Layer 8: PWCMamba, input device: cuda:0 Layer 8: PWCMamba, output device: cuda:0 Layer 9: SPPF, input device: cuda:0 Layer 9: SPPF, output device: cuda:0 Layer 10: Conv, input device: cuda:0 Layer 10: Conv, output device: cuda:0 Layer 11: Upsample, input device: cuda:0 Layer 11: Upsample, output device: cuda:0 Layer 12: Concat, input device: cuda:0 Concat层输入张量数量: 2 输入0形状: torch.Size([1, 64, 16, 16]) (通道数: 64) 输入1形状: torch.Size([1, 128, 16, 16]) (通道数: 128) Concat输出形状: torch.Size([1, 192, 16, 16]) (拼接后通道数: 192) Layer 12: Concat, output device: cuda:0 Layer 13: Conv, input device: cuda:0 Layer 13: Conv, output device: cuda:0 Layer 14: PWCMamba, input device: cuda:0 Layer 14: PWCMamba, output device: cuda:0 Layer 15: Conv, input device: cuda:0 Layer 15: Conv, output device: cuda:0 Layer 16: Upsample, input device: cuda:0 Layer 16: Upsample, output device: cuda:0 Layer 17: Concat, input device: cuda:0 Concat层输入张量数量: 2 输入0形状: torch.Size([1, 32, 32, 32]) (通道数: 32) 输入1形状: torch.Size([1, 64, 32, 32]) (通道数: 64) Concat输出形状: torch.Size([1, 96, 32, 32]) (拼接后通道数: 96) Layer 17: Concat, output device: cuda:0 Layer 18: Conv, input device: cuda:0 Layer 18: Conv, output device: cuda:0 Layer 19: PWCMamba, input device: cuda:0 Layer 19: PWCMamba, output device: cuda:0 Layer 20: Conv, input device: cuda:0 Layer 20: Conv, output device: cuda:0 Layer 21: Concat, input device: cuda:0 Concat层输入张量数量: 2 输入0形状: torch.Size([1, 32, 16, 16]) (通道数: 32) 输入1形状: torch.Size([1, 64, 16, 16]) (通道数: 64) Concat输出形状: torch.Size([1, 96, 16, 16]) (拼接后通道数: 96) Layer 21: Concat, output device: cuda:0 Layer 22: Conv, input device: cuda:0 Layer 22: Conv, output device: cuda:0 Layer 23: PWCMamba, input device: cuda:0 Layer 23: PWCMamba, output device: cuda:0 Layer 24: Conv, input device: cuda:0 Layer 24: Conv, output device: cuda:0 Layer 25: Concat, input device: cuda:0 Concat层输入张量数量: 2 输入0形状: torch.Size([1, 64, 8, 8]) (通道数: 64) 输入1形状: torch.Size([1, 128, 8, 8]) (通道数: 128) Concat输出形状: torch.Size([1, 192, 8, 8]) (拼接后通道数: 192) Layer 25: Concat, output device: cuda:0 Layer 26: Conv, input device: cuda:0 Layer 26: Conv, output device: cuda:0 Layer 27: PWCMamba, input device: cuda:0 Layer 27: PWCMamba, output device: cuda:0 Layer 28: Detect, input device: cuda:0 Layer 28: Detect, output device: cuda:0 Layer 0: Conv, input device: cuda:0 Layer 0: Conv, output device: cuda:0 Layer 1: Conv, input device: cuda:0 Layer 1: Conv, output device: cuda:0 Layer 2: C2f, input device: cuda:0 Layer 2: C2f, output device: cuda:0 Layer 3: Conv, input device: cuda:0 Layer 3: Conv, output device: cuda:0 Layer 4: C2f, input device: cuda:0 Layer 4: C2f, output device: cuda:0 Layer 5: Conv, input device: cuda:0 Layer 5: Conv, output device: cuda:0 Layer 6: C2f, input device: cuda:0 Layer 6: C2f, output device: cuda:0 Layer 7: Conv, input device: cuda:0 Layer 7: Conv, output device: cuda:0 Layer 8: PWCMamba, input device: cuda:0 Layer 8: PWCMamba, output device: cuda:0 Layer 9: SPPF, input device: cuda:0 Layer 9: SPPF, output device: cuda:0 Layer 10: Conv, input device: cuda:0 Layer 10: Conv, output device: cuda:0 Layer 11: Upsample, input device: cuda:0 Layer 11: Upsample, output device: cuda:0 Layer 12: Concat, input device: cuda:0 Concat层输入张量数量: 2 输入0形状: torch.Size([1, 64, 16, 16]) (通道数: 64) 输入1形状: torch.Size([1, 128, 16, 16]) (通道数: 128) Concat输出形状: torch.Size([1, 192, 16, 16]) (拼接后通道数: 192) Layer 12: Concat, output device: cuda:0 Layer 13: Conv, input device: cuda:0 Layer 13: Conv, output device: cuda:0 Layer 14: PWCMamba, input device: cuda:0 Layer 14: PWCMamba, output device: cuda:0 Layer 15: Conv, input device: cuda:0 Layer 15: Conv, output device: cuda:0 Layer 16: Upsample, input device: cuda:0 Layer 16: Upsample, output device: cuda:0 Layer 17: Concat, input device: cuda:0 Concat层输入张量数量: 2 输入0形状: torch.Size([1, 32, 32, 32]) (通道数: 32) 输入1形状: torch.Size([1, 64, 32, 32]) (通道数: 64) Concat输出形状: torch.Size([1, 96, 32, 32]) (拼接后通道数: 96) Layer 17: Concat, output device: cuda:0 Layer 18: Conv, input device: cuda:0 Layer 18: Conv, output device: cuda:0 Layer 19: PWCMamba, input device: cuda:0 Layer 19: PWCMamba, output device: cuda:0 Layer 20: Conv, input device: cuda:0 Layer 20: Conv, output device: cuda:0 Layer 21: Concat, input device: cuda:0 Concat层输入张量数量: 2 输入0形状: torch.Size([1, 32, 16, 16]) (通道数: 32) 输入1形状: torch.Size([1, 64, 16, 16]) (通道数: 64) Concat输出形状: torch.Size([1, 96, 16, 16]) (拼接后通道数: 96) Layer 21: Concat, output device: cuda:0 Layer 22: Conv, input device: cuda:0 Layer 22: Conv, output device: cuda:0 Layer 23: PWCMamba, input device: cuda:0 Layer 23: PWCMamba, output device: cuda:0 Layer 24: Conv, input device: cuda:0 Layer 24: Conv, output device: cuda:0 Layer 25: Concat, input device: cuda:0 Concat层输入张量数量: 2 输入0形状: torch.Size([1, 64, 8, 8]) (通道数: 64) 输入1形状: torch.Size([1, 128, 8, 8]) (通道数: 128) Concat输出形状: torch.Size([1, 192, 8, 8]) (拼接后通道数: 192) Layer 25: Concat, output device: cuda:0 Layer 26: Conv, input device: cuda:0 Layer 26: Conv, output device: cuda:0 Layer 27: PWCMamba, input device: cuda:0 Layer 27: PWCMamba, output device: cuda:0 Layer 28: Detect, input device: cuda:0 Layer 28: Detect, output device: cuda:0 Layer 0: Conv, input device: cuda:0 Layer 0: Conv, output device: cuda:0 Layer 1: Conv, input device: cuda:0 Layer 1: Conv, output device: cuda:0 Layer 2: C2f, input device: cuda:0 Layer 2: C2f, output device: cuda:0 Layer 3: Conv, input device: cuda:0 Layer 3: Conv, output device: cuda:0 Layer 4: C2f, input device: cuda:0 Layer 4: C2f, output device: cuda:0 Layer 5: Conv, input device: cuda:0 Layer 5: Conv, output device: cuda:0 Layer 6: C2f, input device: cuda:0 Layer 6: C2f, output device: cuda:0 Layer 7: Conv, input device: cuda:0 Layer 7: Conv, output device: cuda:0 Layer 8: PWCMamba, input device: cuda:0 Layer 8: PWCMamba, output device: cuda:0 Layer 9: SPPF, input device: cuda:0 Layer 9: SPPF, output device: cuda:0 Layer 10: Conv, input device: cuda:0 Layer 10: Conv, output device: cuda:0 Layer 11: Upsample, input device: cuda:0 Layer 11: Upsample, output device: cuda:0 Layer 12: Concat, input device: cuda:0 Concat层输入张量数量: 2 输入0形状: torch.Size([1, 64, 16, 16]) (通道数: 64) 输入1形状: torch.Size([1, 128, 16, 16]) (通道数: 128) Concat输出形状: torch.Size([1, 192, 16, 16]) (拼接后通道数: 192) Layer 12: Concat, output device: cuda:0 Layer 13: Conv, input device: cuda:0 Layer 13: Conv, output device: cuda:0 Layer 14: PWCMamba, input device: cuda:0 Layer 14: PWCMamba, output device: cuda:0 Layer 15: Conv, input device: cuda:0 Layer 15: Conv, output device: cuda:0 Layer 16: Upsample, input device: cuda:0 Layer 16: Upsample, output device: cuda:0 Layer 17: Concat, input device: cuda:0 Concat层输入张量数量: 2 输入0形状: torch.Size([1, 32, 32, 32]) (通道数: 32) 输入1形状: torch.Size([1, 64, 32, 32]) (通道数: 64) Concat输出形状: torch.Size([1, 96, 32, 32]) (拼接后通道数: 96) Layer 17: Concat, output device: cuda:0 Layer 18: Conv, input device: cuda:0 Layer 18: Conv, output device: cuda:0 Layer 19: PWCMamba, input device: cuda:0 Layer 19: PWCMamba, output device: cuda:0 Layer 20: Conv, input device: cuda:0 Layer 20: Conv, output device: cuda:0 Layer 21: Concat, input device: cuda:0 Concat层输入张量数量: 2 输入0形状: torch.Size([1, 32, 16, 16]) (通道数: 32) 输入1形状: torch.Size([1, 64, 16, 16]) (通道数: 64) Concat输出形状: torch.Size([1, 96, 16, 16]) (拼接后通道数: 96) Layer 21: Concat, output device: cuda:0 Layer 22: Conv, input device: cuda:0 Layer 22: Conv, output device: cuda:0 Layer 23: PWCMamba, input device: cuda:0 Layer 23: PWCMamba, output device: cuda:0 Layer 24: Conv, input device: cuda:0 Layer 24: Conv, output device: cuda:0 Layer 25: Concat, input device: cuda:0 Concat层输入张量数量: 2 输入0形状: torch.Size([1, 64, 8, 8]) (通道数: 64) 输入1形状: torch.Size([1, 128, 8, 8]) (通道数: 128) Concat输出形状: torch.Size([1, 192, 8, 8]) (拼接后通道数: 192) Layer 25: Concat, output device: cuda:0 Layer 26: Conv, input device: cuda:0 Layer 26: Conv, output device: cuda:0 Layer 27: PWCMamba, input device: cuda:0 Layer 27: PWCMamba, output device: cuda:0 Layer 28: Detect, input device: cuda:0 Layer 28: Detect, output device: cuda:0 Layer 0: Conv, input device: cuda:0 Layer 0: Conv, output device: cuda:0 Layer 1: Conv, input device: cuda:0 Layer 1: Conv, output device: cuda:0 Layer 2: C2f, input device: cuda:0 Layer 2: C2f, output device: cuda:0 Layer 3: Conv, input device: cuda:0 Layer 3: Conv, output device: cuda:0 Layer 4: C2f, input device: cuda:0 Layer 4: C2f, output device: cuda:0 Layer 5: Conv, input device: cuda:0 Layer 5: Conv, output device: cuda:0 Layer 6: C2f, input device: cuda:0 Layer 6: C2f, output device: cuda:0 Layer 7: Conv, input device: cuda:0 Layer 7: Conv, output device: cuda:0 Layer 8: PWCMamba, input device: cuda:0 Layer 8: PWCMamba, output device: cuda:0 Layer 9: SPPF, input device: cuda:0 Layer 9: SPPF, output device: cuda:0 Layer 10: Conv, input device: cuda:0 Layer 10: Conv, output device: cuda:0 Layer 11: Upsample, input device: cuda:0 Layer 11: Upsample, output device: cuda:0 Layer 12: Concat, input device: cuda:0 Concat层输入张量数量: 2 输入0形状: torch.Size([1, 64, 16, 16]) (通道数: 64) 输入1形状: torch.Size([1, 128, 16, 16]) (通道数: 128) Concat输出形状: torch.Size([1, 192, 16, 16]) (拼接后通道数: 192) Layer 12: Concat, output device: cuda:0 Layer 13: Conv, input device: cuda:0 Layer 13: Conv, output device: cuda:0 Layer 14: PWCMamba, input device: cuda:0 Layer 14: PWCMamba, output device: cuda:0 Layer 15: Conv, input device: cuda:0 Layer 15: Conv, output device: cuda:0 Layer 16: Upsample, input device: cuda:0 Layer 16: Upsample, output device: cuda:0 Layer 17: Concat, input device: cuda:0 Concat层输入张量数量: 2 输入0形状: torch.Size([1, 32, 32, 32]) (通道数: 32) 输入1形状: torch.Size([1, 64, 32, 32]) (通道数: 64) Concat输出形状: torch.Size([1, 96, 32, 32]) (拼接后通道数: 96) Layer 17: Concat, output device: cuda:0 Layer 18: Conv, input device: cuda:0 Layer 18: Conv, output device: cuda:0 Layer 19: PWCMamba, input device: cuda:0 Layer 19: PWCMamba, output device: cuda:0 Layer 20: Conv, input device: cuda:0 Layer 20: Conv, output device: cuda:0 Layer 21: Concat, input device: cuda:0 Concat层输入张量数量: 2 输入0形状: torch.Size([1, 32, 16, 16]) (通道数: 32) 输入1形状: torch.Size([1, 64, 16, 16]) (通道数: 64) Concat输出形状: torch.Size([1, 96, 16, 16]) (拼接后通道数: 96) Layer 21: Concat, output device: cuda:0 Layer 22: Conv, input device: cuda:0 Layer 22: Conv, output device: cuda:0 Layer 23: PWCMamba, input device: cuda:0 Layer 23: PWCMamba, output device: cuda:0 Layer 24: Conv, input device: cuda:0 Layer 24: Conv, output device: cuda:0 Layer 25: Concat, input device: cuda:0 Concat层输入张量数量: 2 输入0形状: torch.Size([1, 64, 8, 8]) (通道数: 64) 输入1形状: torch.Size([1, 128, 8, 8]) (通道数: 128) Concat输出形状: torch.Size([1, 192, 8, 8]) (拼接后通道数: 192) Layer 25: Concat, output device: cuda:0 Layer 26: Conv, input device: cuda:0 Layer 26: Conv, output device: cuda:0 Layer 27: PWCMamba, input device: cuda:0 Layer 27: PWCMamba, output device: cuda:0 Layer 28: Detect, input device: cuda:0 Layer 28: Detect, output device: cuda:0 Layer 0: Conv, input device: cuda:0 Layer 0: Conv, output device: cuda:0 Layer 1: Conv, input device: cuda:0 Layer 1: Conv, output device: cuda:0 Layer 2: C2f, input device: cuda:0 Layer 2: C2f, output device: cuda:0 Layer 3: Conv, input device: cuda:0 Layer 3: Conv, output device: cuda:0 Layer 4: C2f, input device: cuda:0 Layer 4: C2f, output device: cuda:0 Layer 5: Conv, input device: cuda:0 Layer 5: Conv, output device: cuda:0 Layer 6: C2f, input device: cuda:0 Layer 6: C2f, output device: cuda:0 Layer 7: Conv, input device: cuda:0 Layer 7: Conv, output device: cuda:0 Layer 8: PWCMamba, input device: cuda:0 Layer 8: PWCMamba, output device: cuda:0 Layer 9: SPPF, input device: cuda:0 Layer 9: SPPF, output device: cuda:0 Layer 10: Conv, input device: cuda:0 Layer 10: Conv, output device: cuda:0 Layer 11: Upsample, input device: cuda:0 Layer 11: Upsample, output device: cuda:0 Layer 12: Concat, input device: cuda:0 Concat层输入张量数量: 2 输入0形状: torch.Size([1, 64, 16, 16]) (通道数: 64) 输入1形状: torch.Size([1, 128, 16, 16]) (通道数: 128) Concat输出形状: torch.Size([1, 192, 16, 16]) (拼接后通道数: 192) Layer 12: Concat, output device: cuda:0 Layer 13: Conv, input device: cuda:0 Layer 13: Conv, output device: cuda:0 Layer 14: PWCMamba, input device: cuda:0 Layer 14: PWCMamba, output device: cuda:0 Layer 15: Conv, input device: cuda:0 Layer 15: Conv, output device: cuda:0 Layer 16: Upsample, input device: cuda:0 Layer 16: Upsample, output device: cuda:0 Layer 17: Concat, input device: cuda:0 Concat层输入张量数量: 2 输入0形状: torch.Size([1, 32, 32, 32]) (通道数: 32) 输入1形状: torch.Size([1, 64, 32, 32]) (通道数: 64) Concat输出形状: torch.Size([1, 96, 32, 32]) (拼接后通道数: 96) Layer 17: Concat, output device: cuda:0 Layer 18: Conv, input device: cuda:0 Layer 18: Conv, output device: cuda:0 Layer 19: PWCMamba, input device: cuda:0 Layer 19: PWCMamba, output device: cuda:0 Layer 20: Conv, input device: cuda:0 Layer 20: Conv, output device: cuda:0 Layer 21: Concat, input device: cuda:0 Concat层输入张量数量: 2 输入0形状: torch.Size([1, 32, 16, 16]) (通道数: 32) 输入1形状: torch.Size([1, 64, 16, 16]) (通道数: 64) Concat输出形状: torch.Size([1, 96, 16, 16]) (拼接后通道数: 96) Layer 21: Concat, output device: cuda:0 Layer 22: Conv, input device: cuda:0 Layer 22: Conv, output device: cuda:0 Layer 23: PWCMamba, input device: cuda:0 Layer 23: PWCMamba, output device: cuda:0 Layer 24: Conv, input device: cuda:0 Layer 24: Conv, output device: cuda:0 Layer 25: Concat, input device: cuda:0 Concat层输入张量数量: 2 输入0形状: torch.Size([1, 64, 8, 8]) (通道数: 64) 输入1形状: torch.Size([1, 128, 8, 8]) (通道数: 128) Concat输出形状: torch.Size([1, 192, 8, 8]) (拼接后通道数: 192) Layer 25: Concat, output device: cuda:0 Layer 26: Conv, input device: cuda:0 Layer 26: Conv, output device: cuda:0 Layer 27: PWCMamba, input device: cuda:0 Layer 27: PWCMamba, output device: cuda:0 Layer 28: Detect, input device: cuda:0 Layer 28: Detect, output device: cuda:0 Layer 0: Conv, input device: cuda:0 Layer 0: Conv, output device: cuda:0 Layer 1: Conv, input device: cuda:0 Layer 1: Conv, output device: cuda:0 Layer 2: C2f, input device: cuda:0 Layer 2: C2f, output device: cuda:0 Layer 3: Conv, input device: cuda:0 Layer 3: Conv, output device: cuda:0 Layer 4: C2f, input device: cuda:0 Layer 4: C2f, output device: cuda:0 Layer 5: Conv, input device: cuda:0 Layer 5: Conv, output device: cuda:0 Layer 6: C2f, input device: cuda:0 Layer 6: C2f, output device: cuda:0 Layer 7: Conv, input device: cuda:0 Layer 7: Conv, output device: cuda:0 Layer 8: PWCMamba, input device: cuda:0 Layer 8: PWCMamba, output device: cuda:0 Layer 9: SPPF, input device: cuda:0 Layer 9: SPPF, output device: cuda:0 Layer 10: Conv, input device: cuda:0 Layer 10: Conv, output device: cuda:0 Layer 11: Upsample, input device: cuda:0 Layer 11: Upsample, output device: cuda:0 Layer 12: Concat, input device: cuda:0 Concat层输入张量数量: 2 输入0形状: torch.Size([1, 64, 16, 16]) (通道数: 64) 输入1形状: torch.Size([1, 128, 16, 16]) (通道数: 128) Concat输出形状: torch.Size([1, 192, 16, 16]) (拼接后通道数: 192) Layer 12: Concat, output device: cuda:0 Layer 13: Conv, input device: cuda:0 Layer 13: Conv, output device: cuda:0 Layer 14: PWCMamba, input device: cuda:0 Layer 14: PWCMamba, output device: cuda:0 Layer 15: Conv, input device: cuda:0 Layer 15: Conv, output device: cuda:0 Layer 16: Upsample, input device: cuda:0 Layer 16: Upsample, output device: cuda:0 Layer 17: Concat, input device: cuda:0 Concat层输入张量数量: 2 输入0形状: torch.Size([1, 32, 32, 32]) (通道数: 32) 输入1形状: torch.Size([1, 64, 32, 32]) (通道数: 64) Concat输出形状: torch.Size([1, 96, 32, 32]) (拼接后通道数: 96) Layer 17: Concat, output device: cuda:0 Layer 18: Conv, input device: cuda:0 Layer 18: Conv, output device: cuda:0 Layer 19: PWCMamba, input device: cuda:0 Layer 19: PWCMamba, output device: cuda:0 Layer 20: Conv, input device: cuda:0 Layer 20: Conv, output device: cuda:0 Layer 21: Concat, input device: cuda:0 Concat层输入张量数量: 2 输入0形状: torch.Size([1, 32, 16, 16]) (通道数: 32) 输入1形状: torch.Size([1, 64, 16, 16]) (通道数: 64) Concat输出形状: torch.Size([1, 96, 16, 16]) (拼接后通道数: 96) Layer 21: Concat, output device: cuda:0 Layer 22: Conv, input device: cuda:0 Layer 22: Conv, output device: cuda:0 Layer 23: PWCMamba, input device: cuda:0 Layer 23: PWCMamba, output device: cuda:0 Layer 24: Conv, input device: cuda:0 Layer 24: Conv, output device: cuda:0 Layer 25: Concat, input device: cuda:0 Concat层输入张量数量: 2 输入0形状: torch.Size([1, 64, 8, 8]) (通道数: 64) 输入1形状: torch.Size([1, 128, 8, 8]) (通道数: 128) Concat输出形状: torch.Size([1, 192, 8, 8]) (拼接后通道数: 192) Layer 25: Concat, output device: cuda:0 Layer 26: Conv, input device: cuda:0 Layer 26: Conv, output device: cuda:0 Layer 27: PWCMamba, input device: cuda:0 Layer 27: PWCMamba, output device: cuda:0 Layer 28: Detect, input device: cuda:0 Layer 28: Detect, output device: cuda:0 Ultralytics 8.3.63 🚀 Python-3.10.18 torch-2.1.1+cu118 CUDA:0 (NVIDIA GeForce RTX 2060, 6144MiB) engine\trainer: task=detect, mode=train, model=E:/ultralytics-v8.3.63/ultralytics/models/yolo/pwcmamba/yolov8pwcm.yaml, data=E:/ultralytics-v8.3.63/motogp.yaml, epochs=100, time=None, patience=100, batch=16, imgsz=768, save=True, save_period=-1, cache=True, device=0, workers=2, project=None, name=train12, exist_ok=False, pretrained=False, optimizer=auto, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=10, resume=False, amp=True, fraction=1.0, profile=False, freeze=None, multi_scale=False, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, vid_stride=1, stream_buffer=False, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, embed=None, show=False, save_frames=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, show_boxes=True, line_width=None, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=True, opset=None, workspace=None, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, bgr=0.0, mosaic=1.0, mixup=0.0, copy_paste=0.0, copy_paste_mode=flip, auto_augment=randaugment, erasing=0.4, crop_fraction=1.0, cfg=None, tracker=botsort.yaml, save_dir=runs\detect\train12 WARNING ⚠️ no model scale passed. Assuming scale='n'. from n params module arguments 解析第0层,from=-1,当前ch列表长度=1 0 -1 1 464 ultralytics.nn.modules.conv.Conv [3, 16, 3, 2] 解析第0层后,save列表:[] 解析第1层,from=-1,当前ch列表长度=1 1 -1 1 4672 ultralytics.nn.modules.conv.Conv [16, 32, 3, 2] 解析第1层后,save列表:[] 解析第2层,from=-1,当前ch列表长度=2 2 -1 1 7360 ultralytics.nn.modules.block.C2f [32, 32, 1, True] 解析第2层后,save列表:[] 解析第3层,from=-1,当前ch列表长度=3 3 -1 1 18560 ultralytics.nn.modules.conv.Conv [32, 64, 3, 2] 解析第3层后,save列表:[] 解析第4层,from=-1,当前ch列表长度=4 4 -1 1 29056 ultralytics.nn.modules.block.C2f [64, 64, 1, True] 解析第4层后,save列表:[] 解析第5层,from=-1,当前ch列表长度=5 5 -1 1 73984 ultralytics.nn.modules.conv.Conv [64, 128, 3, 2] 解析第5层后,save列表:[] 解析第6层,from=-1,当前ch列表长度=6 6 -1 1 115456 ultralytics.nn.modules.block.C2f [128, 128, 1, True] 解析第6层后,save列表:[] 解析第7层,from=-1,当前ch列表长度=7 7 -1 1 184640 ultralytics.nn.modules.conv.Conv [128, 160, 3, 2] 解析第7层后,save列表:[] 解析第8层,from=-1,当前ch列表长度=8 8 -1 1 644690 ultralytics.nn.modules.block.PWCMamba [160, 64] 解析第8层后,save列表:[] 解析第9层,from=-1,当前ch列表长度=9 9 -1 1 18752 ultralytics.nn.modules.block.SPPF [64, 128, 5] 解析第9层后,save列表:[] 解析第10层,from=-1,当前ch列表长度=10 10 -1 1 8320 ultralytics.nn.modules.conv.Conv [128, 64, 1, 1] 解析第10层后,save列表:[] 解析第11层,from=-1,当前ch列表长度=11 11 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] 解析第11层后,save列表:[] 解析第12层,from=[-1, 6],当前ch列表长度=12 Concat层12:将历史层6加入save列表 12 [-1, 6] 1 0 ultralytics.nn.modules.conv.Concat [1] 解析第12层后,save列表:[6] 解析第13层,from=-1,当前ch列表长度=13 13 -1 1 12416 ultralytics.nn.modules.conv.Conv [192, 64, 1, 1] 解析第13层后,save列表:[6] 解析第14层,from=-1,当前ch列表长度=14 14 -1 1 118178 ultralytics.nn.modules.block.PWCMamba [64, 64] 解析第14层后,save列表:[6] 解析第15层,from=-1,当前ch列表长度=15 15 -1 1 2112 ultralytics.nn.modules.conv.Conv [64, 32, 1, 1] 解析第15层后,save列表:[6] 解析第16层,from=-1,当前ch列表长度=16 16 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] 解析第16层后,save列表:[6] 解析第17层,from=[-1, 4],当前ch列表长度=17 Concat层17:将历史层4加入save列表 17 [-1, 4] 1 0 ultralytics.nn.modules.conv.Concat [1] 解析第17层后,save列表:[4, 6] 解析第18层,from=-1,当前ch列表长度=18 18 -1 1 3136 ultralytics.nn.modules.conv.Conv [96, 32, 1, 1] 解析第18层后,save列表:[4, 6] 解析第19层,from=-1,当前ch列表长度=19 19 -1 1 34770 ultralytics.nn.modules.block.PWCMamba [32, 32] 解析第19层后,save列表:[4, 6] 解析第20层,from=-1,当前ch列表长度=20 20 -1 1 9280 ultralytics.nn.modules.conv.Conv [32, 32, 3, 2] 解析第20层后,save列表:[4, 6] 解析第21层,from=[-1, 14],当前ch列表长度=21 Concat层21:将历史层14加入save列表 21 [-1, 14] 1 0 ultralytics.nn.modules.conv.Concat [1] 解析第21层后,save列表:[4, 6, 14] 解析第22层,from=-1,当前ch列表长度=22 22 -1 1 6272 ultralytics.nn.modules.conv.Conv [96, 64, 1, 1] 解析第22层后,save列表:[4, 6, 14] 解析第23层,from=-1,当前ch列表长度=23 23 -1 1 118178 ultralytics.nn.modules.block.PWCMamba [64, 64] 解析第23层后,save列表:[4, 6, 14] 解析第24层,from=-1,当前ch列表长度=24 24 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2] 解析第24层后,save列表:[4, 6, 14] 解析第25层,from=[-1, 9],当前ch列表长度=25 Concat层25:将历史层9加入save列表 25 [-1, 9] 1 0 ultralytics.nn.modules.conv.Concat [1] 解析第25层后,save列表:[4, 6, 9, 14] 解析第26层,from=-1,当前ch列表长度=26 26 -1 1 24832 ultralytics.nn.modules.conv.Conv [192, 128, 1, 1] 解析第26层后,save列表:[4, 6, 9, 14] 解析第27层,from=-1,当前ch列表长度=27 27 -1 1 430914 ultralytics.nn.modules.block.PWCMamba [128, 128] 解析第27层后,save列表:[4, 6, 9, 14] 解析第28层,from=[19, 23, 27],当前ch列表长度=28 层28:将from列表中的19加入save列表 层28:将from列表中的23加入save列表 层28:将from列表中的27加入save列表 28 [19, 23, 27] 1 267123 ultralytics.nn.modules.head.Detect [1, [32, 64, 128]] 解析第28层后,save列表:[4, 6, 9, 14, 19, 23, 27] Layer 0: Conv, input device: cuda:0 Layer 0: Conv, output device: cuda:0 Layer 1: Conv, input device: cuda:0 Layer 1: Conv, output device: cuda:0 Layer 2: C2f, input device: cuda:0 Layer 2: C2f, output device: cuda:0 Layer 3: Conv, input device: cuda:0 Layer 3: Conv, output device: cuda:0 Layer 4: C2f, input device: cuda:0 Layer 4: C2f, output device: cuda:0 Layer 5: Conv, input device: cuda:0 Layer 5: Conv, output device: cuda:0 Layer 6: C2f, input device: cuda:0 Layer 6: C2f, output device: cuda:0 Layer 7: Conv, input device: cuda:0 Layer 7: Conv, output device: cuda:0 Layer 8: PWCMamba, input device: cuda:0 Layer 8: PWCMamba, output device: cuda:0 Layer 9: SPPF, input device: cuda:0 Layer 9: SPPF, output device: cuda:0 Layer 10: Conv, input device: cuda:0 Layer 10: Conv, output device: cuda:0 Layer 11: Upsample, input device: cuda:0 Layer 11: Upsample, output device: cuda:0 Layer 12: Concat, input device: cuda:0 Concat层输入张量数量: 2 输入0形状: torch.Size([1, 64, 16, 16]) (通道数: 64) 输入1形状: torch.Size([1, 128, 16, 16]) (通道数: 128) Concat输出形状: torch.Size([1, 192, 16, 16]) (拼接后通道数: 192) Layer 12: Concat, output device: cuda:0 Layer 13: Conv, input device: cuda:0 Layer 13: Conv, output device: cuda:0 Layer 14: PWCMamba, input device: cuda:0 Layer 14: PWCMamba, output device: cuda:0 Layer 15: Conv, input device: cuda:0 Layer 15: Conv, output device: cuda:0 Layer 16: Upsample, input device: cuda:0 Layer 16: Upsample, output device: cuda:0 Layer 17: Concat, input device: cuda:0 Concat层输入张量数量: 2 输入0形状: torch.Size([1, 32, 32, 32]) (通道数: 32) 输入1形状: torch.Size([1, 64, 32, 32]) (通道数: 64) Concat输出形状: torch.Size([1, 96, 32, 32]) (拼接后通道数: 96) Layer 17: Concat, output device: cuda:0 Layer 18: Conv, input device: cuda:0 Layer 18: Conv, output device: cuda:0 Layer 19: PWCMamba, input device: cuda:0 Layer 19: PWCMamba, output device: cuda:0 Layer 20: Conv, input device: cuda:0 Layer 20: Conv, output device: cuda:0 Layer 21: Concat, input device: cuda:0 Concat层输入张量数量: 2 输入0形状: torch.Size([1, 32, 16, 16]) (通道数: 32) 输入1形状: torch.Size([1, 64, 16, 16]) (通道数: 64) Concat输出形状: torch.Size([1, 96, 16, 16]) (拼接后通道数: 96) Layer 21: Concat, output device: cuda:0 Layer 22: Conv, input device: cuda:0 Layer 22: Conv, output device: cuda:0 Layer 23: PWCMamba, input device: cuda:0 Layer 23: PWCMamba, output device: cuda:0 Layer 24: Conv, input device: cuda:0 Layer 24: Conv, output device: cuda:0 Layer 25: Concat, input device: cuda:0 Concat层输入张量数量: 2 输入0形状: torch.Size([1, 64, 8, 8]) (通道数: 64) 输入1形状: torch.Size([1, 128, 8, 8]) (通道数: 128) Concat输出形状: torch.Size([1, 192, 8, 8]) (拼接后通道数: 192) Layer 25: Concat, output device: cuda:0 Layer 26: Conv, input device: cuda:0 Layer 26: Conv, output device: cuda:0 Layer 27: PWCMamba, input device: cuda:0 Layer 27: PWCMamba, output device: cuda:0 Layer 28: Detect, input device: cuda:0 Layer 28: Detect, output device: cuda:0 Layer 0: Conv, input device: cuda:0 Layer 0: Conv, output device: cuda:0 Layer 1: Conv, input device: cuda:0 Layer 1: Conv, output device: cuda:0 Layer 2: C2f, input device: cuda:0 Layer 2: C2f, output device: cuda:0 Layer 3: Conv, input device: cuda:0 Layer 3: Conv, output device: cuda:0 Layer 4: C2f, input device: cuda:0 Layer 4: C2f, output device: cuda:0 Layer 5: Conv, input device: cuda:0 Layer 5: Conv, output device: cuda:0 Layer 6: C2f, input device: cuda:0 Layer 6: C2f, output device: cuda:0 Layer 7: Conv, input device: cuda:0 Layer 7: Conv, output device: cuda:0 Layer 8: PWCMamba, input device: cuda:0 Layer 8: PWCMamba, output device: cuda:0 Layer 9: SPPF, input device: cuda:0 Layer 9: SPPF, output device: cuda:0 Layer 10: Conv, input device: cuda:0 Layer 10: Conv, output device: cuda:0 Layer 11: Upsample, input device: cuda:0 Layer 11: Upsample, output device: cuda:0 Layer 12: Concat, input device: cuda:0 Concat层输入张量数量: 2 输入0形状: torch.Size([1, 64, 16, 16]) (通道数: 64) 输入1形状: torch.Size([1, 128, 16, 16]) (通道数: 128) Concat输出形状: torch.Size([1, 192, 16, 16]) (拼接后通道数: 192) Layer 12: Concat, output device: cuda:0 Layer 13: Conv, input device: cuda:0 Layer 13: Conv, output device: cuda:0 Layer 14: PWCMamba, input device: cuda:0 Layer 14: PWCMamba, output device: cuda:0 Layer 15: Conv, input device: cuda:0 Layer 15: Conv, output device: cuda:0 Layer 16: Upsample, input device: cuda:0 Layer 16: Upsample, output device: cuda:0 Layer 17: Concat, input device: cuda:0 Concat层输入张量数量: 2 输入0形状: torch.Size([1, 32, 32, 32]) (通道数: 32) 输入1形状: torch.Size([1, 64, 32, 32]) (通道数: 64) Concat输出形状: torch.Size([1, 96, 32, 32]) (拼接后通道数: 96) Layer 17: Concat, output device: cuda:0 Layer 18: Conv, input device: cuda:0 Layer 18: Conv, output device: cuda:0 Layer 19: PWCMamba, input device: cuda:0 Layer 19: PWCMamba, output device: cuda:0 Layer 20: Conv, input device: cuda:0 Layer 20: Conv, output device: cuda:0 Layer 21: Concat, input device: cuda:0 Concat层输入张量数量: 2 输入0形状: torch.Size([1, 32, 16, 16]) (通道数: 32) 输入1形状: torch.Size([1, 64, 16, 16]) (通道数: 64) Concat输出形状: torch.Size([1, 96, 16, 16]) (拼接后通道数: 96) Layer 21: Concat, output device: cuda:0 Layer 22: Conv, input device: cuda:0 Layer 22: Conv, output device: cuda:0 Layer 23: PWCMamba, input device: cuda:0 Layer 23: PWCMamba, output device: cuda:0 Layer 24: Conv, input device: cuda:0 Layer 24: Conv, output device: cuda:0 Layer 25: Concat, input device: cuda:0 Concat层输入张量数量: 2 输入0形状: torch.Size([1, 64, 8, 8]) (通道数: 64) 输入1形状: torch.Size([1, 128, 8, 8]) (通道数: 128) Concat输出形状: torch.Size([1, 192, 8, 8]) (拼接后通道数: 192) Layer 25: Concat, output device: cuda:0 Layer 26: Conv, input device: cuda:0 Layer 26: Conv, output device: cuda:0 Layer 27: PWCMamba, input device: cuda:0 Layer 27: PWCMamba, output device: cuda:0 Layer 28: Detect, input device: cuda:0 Layer 28: Detect, output device: cuda:0 Layer 0: Conv, input device: cuda:0 Layer 0: Conv, output device: cuda:0 Layer 1: Conv, input device: cuda:0 Layer 1: Conv, output device: cuda:0 Layer 2: C2f, input device: cuda:0 Layer 2: C2f, output device: cuda:0 Layer 3: Conv, input device: cuda:0 Layer 3: Conv, output device: cuda:0 Layer 4: C2f, input device: cuda:0 Layer 4: C2f, output device: cuda:0 Layer 5: Conv, input device: cuda:0 Layer 5: Conv, output device: cuda:0 Layer 6: C2f, input device: cuda:0 Layer 6: C2f, output device: cuda:0 Layer 7: Conv, input device: cuda:0 Layer 7: Conv, output device: cuda:0 Layer 8: PWCMamba, input device: cuda:0 Layer 8: PWCMamba, output device: cuda:0 Layer 9: SPPF, input device: cuda:0 Layer 9: SPPF, output device: cuda:0 Layer 10: Conv, input device: cuda:0 Layer 10: Conv, output device: cuda:0 Layer 11: Upsample, input device: cuda:0 Layer 11: Upsample, output device: cuda:0 Layer 12: Concat, input device: cuda:0 Concat层输入张量数量: 2 输入0形状: torch.Size([1, 64, 16, 16]) (通道数: 64) 输入1形状: torch.Size([1, 128, 16, 16]) (通道数: 128) Concat输出形状: torch.Size([1, 192, 16, 16]) (拼接后通道数: 192) Layer 12: Concat, output device: cuda:0 Layer 13: Conv, input device: cuda:0 Layer 13: Conv, output device: cuda:0 Layer 14: PWCMamba, input device: cuda:0 Layer 14: PWCMamba, output device: cuda:0 Layer 15: Conv, input device: cuda:0 Layer 15: Conv, output device: cuda:0 Layer 16: Upsample, input device: cuda:0 Layer 16: Upsample, output device: cuda:0 Layer 17: Concat, input device: cuda:0 Concat层输入张量数量: 2 输入0形状: torch.Size([1, 32, 32, 32]) (通道数: 32) 输入1形状: torch.Size([1, 64, 32, 32]) (通道数: 64) Concat输出形状: torch.Size([1, 96, 32, 32]) (拼接后通道数: 96) Layer 17: Concat, output device: cuda:0 Layer 18: Conv, input device: cuda:0 Layer 18: Conv, output device: cuda:0 Layer 19: PWCMamba, input device: cuda:0 Layer 19: PWCMamba, output device: cuda:0 Layer 20: Conv, input device: cuda:0 Layer 20: Conv, output device: cuda:0 Layer 21: Concat, input device: cuda:0 Concat层输入张量数量: 2 输入0形状: torch.Size([1, 32, 16, 16]) (通道数: 32) 输入1形状: torch.Size([1, 64, 16, 16]) (通道数: 64) Concat输出形状: torch.Size([1, 96, 16, 16]) (拼接后通道数: 96) Layer 21: Concat, output device: cuda:0 Layer 22: Conv, input device: cuda:0 Layer 22: Conv, output device: cuda:0 Layer 23: PWCMamba, input device: cuda:0 Layer 23: PWCMamba, output device: cuda:0 Layer 24: Conv, input device: cuda:0 Layer 24: Conv, output device: cuda:0 Layer 25: Concat, input device: cuda:0 Concat层输入张量数量: 2 输入0形状: torch.Size([1, 64, 8, 8]) (通道数: 64) 输入1形状: torch.Size([1, 128, 8, 8]) (通道数: 128) Concat输出形状: torch.Size([1, 192, 8, 8]) (拼接后通道数: 192) Layer 25: Concat, output device: cuda:0 Layer 26: Conv, input device: cuda:0 Layer 26: Conv, output device: cuda:0 Layer 27: PWCMamba, input device: cuda:0 Layer 27: PWCMamba, output device: cuda:0 Layer 28: Detect, input device: cuda:0 Layer 28: Detect, output device: cuda:0 Layer 0: Conv, input device: cuda:0 Layer 0: Conv, output device: cuda:0 Layer 1: Conv, input device: cuda:0 Layer 1: Conv, output device: cuda:0 Layer 2: C2f, input device: cuda:0 Layer 2: C2f, output device: cuda:0 Layer 3: Conv, input device: cuda:0 Layer 3: Conv, output device: cuda:0 Layer 4: C2f, input device: cuda:0 Layer 4: C2f, output device: cuda:0 Layer 5: Conv, input device: cuda:0 Layer 5: Conv, output device: cuda:0 Layer 6: C2f, input device: cuda:0 Layer 6: C2f, output device: cuda:0 Layer 7: Conv, input device: cuda:0 Layer 7: Conv, output device: cuda:0 Layer 8: PWCMamba, input device: cuda:0 Layer 8: PWCMamba, output device: cuda:0 Layer 9: SPPF, input device: cuda:0 Layer 9: SPPF, output device: cuda:0 Layer 10: Conv, input device: cuda:0 Layer 10: Conv, output device: cuda:0 Layer 11: Upsample, input device: cuda:0 Layer 11: Upsample, output device: cuda:0 Layer 12: Concat, input device: cuda:0 Concat层输入张量数量: 2 输入0形状: torch.Size([1, 64, 16, 16]) (通道数: 64) 输入1形状: torch.Size([1, 128, 16, 16]) (通道数: 128) Concat输出形状: torch.Size([1, 192, 16, 16]) (拼接后通道数: 192) Layer 12: Concat, output device: cuda:0 Layer 13: Conv, input device: cuda:0 Layer 13: Conv, output device: cuda:0 Layer 14: PWCMamba, input device: cuda:0 Layer 14: PWCMamba, output device: cuda:0 Layer 15: Conv, input device: cuda:0 Layer 15: Conv, output device: cuda:0 Layer 16: Upsample, input device: cuda:0 Layer 16: Upsample, output device: cuda:0 Layer 17: Concat, input device: cuda:0 Concat层输入张量数量: 2 输入0形状: torch.Size([1, 32, 32, 32]) (通道数: 32) 输入1形状: torch.Size([1, 64, 32, 32]) (通道数: 64) Concat输出形状: torch.Size([1, 96, 32, 32]) (拼接后通道数: 96) Layer 17: Concat, output device: cuda:0 Layer 18: Conv, input device: cuda:0 Layer 18: Conv, output device: cuda:0 Layer 19: PWCMamba, input device: cuda:0 Layer 19: PWCMamba, output device: cuda:0 Layer 20: Conv, input device: cuda:0 Layer 20: Conv, output device: cuda:0 Layer 21: Concat, input device: cuda:0 Concat层输入张量数量: 2 输入0形状: torch.Size([1, 32, 16, 16]) (通道数: 32) 输入1形状: torch.Size([1, 64, 16, 16]) (通道数: 64) Concat输出形状: torch.Size([1, 96, 16, 16]) (拼接后通道数: 96) Layer 21: Concat, output device: cuda:0 Layer 22: Conv, input device: cuda:0 Layer 22: Conv, output device: cuda:0 Layer 23: PWCMamba, input device: cuda:0 Layer 23: PWCMamba, output device: cuda:0 Layer 24: Conv, input device: cuda:0 Layer 24: Conv, output device: cuda:0 Layer 25: Concat, input device: cuda:0 Concat层输入张量数量: 2 输入0形状: torch.Size([1, 64, 8, 8]) (通道数: 64) 输入1形状: torch.Size([1, 128, 8, 8]) (通道数: 128) Concat输出形状: torch.Size([1, 192, 8, 8]) (拼接后通道数: 192) Layer 25: Concat, output device: cuda:0 Layer 26: Conv, input device: cuda:0 Layer 26: Conv, output device: cuda:0 Layer 27: PWCMamba, input device: cuda:0 Layer 27: PWCMamba, output device: cuda:0 Layer 28: Detect, input device: cuda:0 Layer 28: Detect, output device: cuda:0 Layer 0: Conv, input device: cuda:0 Layer 0: Conv, output device: cuda:0 Layer 1: Conv, input device: cuda:0 Layer 1: Conv, output device: cuda:0 Layer 2: C2f, input device: cuda:0 Layer 2: C2f, output device: cuda:0 Layer 3: Conv, input device: cuda:0 Layer 3: Conv, output device: cuda:0 Layer 4: C2f, input device: cuda:0 Layer 4: C2f, output device: cuda:0 Layer 5: Conv, input device: cuda:0 Layer 5: Conv, output device: cuda:0 Layer 6: C2f, input device: cuda:0 Layer 6: C2f, output device: cuda:0 Layer 7: Conv, input device: cuda:0 Layer 7: Conv, output device: cuda:0 Layer 8: PWCMamba, input device: cuda:0 Layer 8: PWCMamba, output device: cuda:0 Layer 9: SPPF, input device: cuda:0 Layer 9: SPPF, output device: cuda:0 Layer 10: Conv, input device: cuda:0 Layer 10: Conv, output device: cuda:0 Layer 11: Upsample, input device: cuda:0 Layer 11: Upsample, output device: cuda:0 Layer 12: Concat, input device: cuda:0 Concat层输入张量数量: 2 输入0形状: torch.Size([1, 64, 16, 16]) (通道数: 64) 输入1形状: torch.Size([1, 128, 16, 16]) (通道数: 128) Concat输出形状: torch.Size([1, 192, 16, 16]) (拼接后通道数: 192) Layer 12: Concat, output device: cuda:0 Layer 13: Conv, input device: cuda:0 Layer 13: Conv, output device: cuda:0 Layer 14: PWCMamba, input device: cuda:0 Layer 14: PWCMamba, output device: cuda:0 Layer 15: Conv, input device: cuda:0 Layer 15: Conv, output device: cuda:0 Layer 16: Upsample, input device: cuda:0 Layer 16: Upsample, output device: cuda:0 Layer 17: Concat, input device: cuda:0 Concat层输入张量数量: 2 输入0形状: torch.Size([1, 32, 32, 32]) (通道数: 32) 输入1形状: torch.Size([1, 64, 32, 32]) (通道数: 64) Concat输出形状: torch.Size([1, 96, 32, 32]) (拼接后通道数: 96) Layer 17: Concat, output device: cuda:0 Layer 18: Conv, input device: cuda:0 Layer 18: Conv, output device: cuda:0 Layer 19: PWCMamba, input device: cuda:0 Layer 19: PWCMamba, output device: cuda:0 Layer 20: Conv, input device: cuda:0 Layer 20: Conv, output device: cuda:0 Layer 21: Concat, input device: cuda:0 Concat层输入张量数量: 2 输入0形状: torch.Size([1, 32, 16, 16]) (通道数: 32) 输入1形状: torch.Size([1, 64, 16, 16]) (通道数: 64) Concat输出形状: torch.Size([1, 96, 16, 16]) (拼接后通道数: 96) Layer 21: Concat, output device: cuda:0 Layer 22: Conv, input device: cuda:0 Layer 22: Conv, output device: cuda:0 Layer 23: PWCMamba, input device: cuda:0 Layer 23: PWCMamba, output device: cuda:0 Layer 24: Conv, input device: cuda:0 Layer 24: Conv, output device: cuda:0 Layer 25: Concat, input device: cuda:0 Concat层输入张量数量: 2 输入0形状: torch.Size([1, 64, 8, 8]) (通道数: 64) 输入1形状: torch.Size([1, 128, 8, 8]) (通道数: 128) Concat输出形状: torch.Size([1, 192, 8, 8]) (拼接后通道数: 192) Layer 25: Concat, output device: cuda:0 Layer 26: Conv, input device: cuda:0 Layer 26: Conv, output device: cuda:0 Layer 27: PWCMamba, input device: cuda:0 Layer 27: PWCMamba, output device: cuda:0 Layer 28: Detect, input device: cuda:0 Layer 28: Detect, output device: cuda:0 Layer 0: Conv, input device: cuda:0 Layer 0: Conv, output device: cuda:0 Layer 1: Conv, input device: cuda:0 Layer 1: Conv, output device: cuda:0 Layer 2: C2f, input device: cuda:0 Layer 2: C2f, output device: cuda:0 Layer 3: Conv, input device: cuda:0 Layer 3: Conv, output device: cuda:0 Layer 4: C2f, input device: cuda:0 Layer 4: C2f, output device: cuda:0 Layer 5: Conv, input device: cuda:0 Layer 5: Conv, output device: cuda:0 Layer 6: C2f, input device: cuda:0 Layer 6: C2f, output device: cuda:0 Layer 7: Conv, input device: cuda:0 Layer 7: Conv, output device: cuda:0 Layer 8: PWCMamba, input device: cuda:0 Layer 8: PWCMamba, output device: cuda:0 Layer 9: SPPF, input device: cuda:0 Layer 9: SPPF, output device: cuda:0 Layer 10: Conv, input device: cuda:0 Layer 10: Conv, output device: cuda:0 Layer 11: Upsample, input device: cuda:0 Layer 11: Upsample, output device: cuda:0 Layer 12: Concat, input device: cuda:0 Concat层输入张量数量: 2 输入0形状: torch.Size([1, 64, 16, 16]) (通道数: 64) 输入1形状: torch.Size([1, 128, 16, 16]) (通道数: 128) Concat输出形状: torch.Size([1, 192, 16, 16]) (拼接后通道数: 192) Layer 12: Concat, output device: cuda:0 Layer 13: Conv, input device: cuda:0 Layer 13: Conv, output device: cuda:0 Layer 14: PWCMamba, input device: cuda:0 Layer 14: PWCMamba, output device: cuda:0 Layer 15: Conv, input device: cuda:0 Layer 15: Conv, output device: cuda:0 Layer 16: Upsample, input device: cuda:0 Layer 16: Upsample, output device: cuda:0 Layer 17: Concat, input device: cuda:0 Concat层输入张量数量: 2 输入0形状: torch.Size([1, 32, 32, 32]) (通道数: 32) 输入1形状: torch.Size([1, 64, 32, 32]) (通道数: 64) Concat输出形状: torch.Size([1, 96, 32, 32]) (拼接后通道数: 96) Layer 17: Concat, output device: cuda:0 Layer 18: Conv, input device: cuda:0 Layer 18: Conv, output device: cuda:0 Layer 19: PWCMamba, input device: cuda:0 Layer 19: PWCMamba, output device: cuda:0 Layer 20: Conv, input device: cuda:0 Layer 20: Conv, output device: cuda:0 Layer 21: Concat, input device: cuda:0 Concat层输入张量数量: 2 输入0形状: torch.Size([1, 32, 16, 16]) (通道数: 32) 输入1形状: torch.Size([1, 64, 16, 16]) (通道数: 64) Concat输出形状: torch.Size([1, 96, 16, 16]) (拼接后通道数: 96) Layer 21: Concat, output device: cuda:0 Layer 22: Conv, input device: cuda:0 Layer 22: Conv, output device: cuda:0 Layer 23: PWCMamba, input device: cuda:0 Layer 23: PWCMamba, output device: cuda:0 Layer 24: Conv, input device: cuda:0 Layer 24: Conv, output device: cuda:0 Layer 25: Concat, input device: cuda:0 Concat层输入张量数量: 2 输入0形状: torch.Size([1, 64, 8, 8]) (通道数: 64) 输入1形状: torch.Size([1, 128, 8, 8]) (通道数: 128) Concat输出形状: torch.Size([1, 192, 8, 8]) (拼接后通道数: 192) Layer 25: Concat, output device: cuda:0 Layer 26: Conv, input device: cuda:0 Layer 26: Conv, output device: cuda:0 Layer 27: PWCMamba, input device: cuda:0 Layer 27: PWCMamba, output device: cuda:0 Layer 28: Detect, input device: cuda:0 Layer 28: Detect, output device: cuda:0 Layer 0: Conv, input device: cuda:0 Layer 0: Conv, output device: cuda:0 Layer 1: Conv, input device: cuda:0 Layer 1: Conv, output device: cuda:0 Layer 2: C2f, input device: cuda:0 Layer 2: C2f, output device: cuda:0 Layer 3: Conv, input device: cuda:0 Layer 3: Conv, output device: cuda:0 Layer 4: C2f, input device: cuda:0 Layer 4: C2f, output device: cuda:0 Layer 5: Conv, input device: cuda:0 Layer 5: Conv, output device: cuda:0 Layer 6: C2f, input device: cuda:0 Layer 6: C2f, output device: cuda:0 Layer 7: Conv, input device: cuda:0 Layer 7: Conv, output device: cuda:0 Layer 8: PWCMamba, input device: cuda:0 Layer 8: PWCMamba, output device: cuda:0 Layer 9: SPPF, input device: cuda:0 Layer 9: SPPF, output device: cuda:0 Layer 10: Conv, input device: cuda:0 Layer 10: Conv, output device: cuda:0 Layer 11: Upsample, input device: cuda:0 Layer 11: Upsample, output device: cuda:0 Layer 12: Concat, input device: cuda:0 Concat层输入张量数量: 2 输入0形状: torch.Size([1, 64, 4, 4]) (通道数: 64) 输入1形状: torch.Size([1, 128, 4, 4]) (通道数: 128) Concat输出形状: torch.Size([1, 192, 4, 4]) (拼接后通道数: 192) Layer 12: Concat, output device: cuda:0 Layer 13: Conv, input device: cuda:0 Layer 13: Conv, output device: cuda:0 Layer 14: PWCMamba, input device: cuda:0 Layer 14: PWCMamba, output device: cuda:0 Layer 15: Conv, input device: cuda:0 Layer 15: Conv, output device: cuda:0 Layer 16: Upsample, input device: cuda:0 Layer 16: Upsample, output device: cuda:0 Layer 17: Concat, input device: cuda:0 Concat层输入张量数量: 2 输入0形状: torch.Size([1, 32, 8, 8]) (通道数: 32) 输入1形状: torch.Size([1, 64, 7, 7]) (通道数: 64) Concat拼接失败: Sizes of tensors must match except in dimension 1. Expected size 8 but got size 7 for tensor number 1 in the list. Layer 0: Conv, input device: cuda:0 Layer 0: Conv, output device: cuda:0 Layer 1: Conv, input device: cuda:0 Layer 1: Conv, output device: cuda:0 Layer 2: C2f, input device: cuda:0 Layer 2: C2f, output device: cuda:0 Layer 3: Conv, input device: cuda:0 Layer 3: Conv, output device: cuda:0 Layer 4: C2f, input device: cuda:0 Layer 4: C2f, output device: cuda:0 Layer 5: Conv, input device: cuda:0 Layer 5: Conv, output device: cuda:0 Layer 6: C2f, input device: cuda:0 Layer 6: C2f, output device: cuda:0 Layer 7: Conv, input device: cuda:0 Layer 7: Conv, output device: cuda:0 Layer 8: PWCMamba, input device: cuda:0 Layer 8: PWCMamba, output device: cuda:0 Layer 9: SPPF, input device: cuda:0 Layer 9: SPPF, output device: cuda:0 Layer 10: Conv, input device: cuda:0 Layer 10: Conv, output device: cuda:0 Layer 11: Upsample, input device: cuda:0 Layer 11: Upsample, output device: cuda:0 Layer 12: Concat, input device: cuda:0 Concat层输入张量数量: 2 输入0形状: torch.Size([1, 64, 40, 40]) (通道数: 64) 输入1形状: torch.Size([1, 128, 40, 40]) (通道数: 128) Concat输出形状: torch.Size([1, 192, 40, 40]) (拼接后通道数: 192) Layer 12: Concat, output device: cuda:0 Layer 13: Conv, input device: cuda:0 Layer 13: Conv, output device: cuda:0 Layer 14: PWCMamba, input device: cuda:0 Layer 14: PWCMamba, output device: cuda:0 Layer 15: Conv, input device: cuda:0 Layer 15: Conv, output device: cuda:0 Layer 16: Upsample, input device: cuda:0 Layer 16: Upsample, output device: cuda:0 Layer 17: Concat, input device: cuda:0 Concat层输入张量数量: 2 输入0形状: torch.Size([1, 32, 80, 80]) (通道数: 32) 输入1形状: torch.Size([1, 64, 80, 80]) (通道数: 64) Concat输出形状: torch.Size([1, 96, 80, 80]) (拼接后通道数: 96) Layer 17: Concat, output device: cuda:0 Layer 18: Conv, input device: cuda:0 Layer 18: Conv, output device: cuda:0 Layer 19: PWCMamba, input device: cuda:0 Layer 19: PWCMamba, output device: cuda:0 Layer 20: Conv, input device: cuda:0 Layer 20: Conv, output device: cuda:0 Layer 21: Concat, input device: cuda:0 Concat层输入张量数量: 2 输入0形状: torch.Size([1, 32, 40, 40]) (通道数: 32) 输入1形状: torch.Size([1, 64, 40, 40]) (通道数: 64) Concat输出形状: torch.Size([1, 96, 40, 40]) (拼接后通道数: 96) Layer 21: Concat, output device: cuda:0 Layer 22: Conv, input device: cuda:0 Layer 22: Conv, output device: cuda:0 Layer 23: PWCMamba, input device: cuda:0 Layer 23: PWCMamba, output device: cuda:0 Layer 24: Conv, input device: cuda:0 Layer 24: Conv, output device: cuda:0 Layer 25: Concat, input device: cuda:0 Concat层输入张量数量: 2 输入0形状: torch.Size([1, 64, 20, 20]) (通道数: 64) 输入1形状: torch.Size([1, 128, 20, 20]) (通道数: 128) Concat输出形状: torch.Size([1, 192, 20, 20]) (拼接后通道数: 192) Layer 25: Concat, output device: cuda:0 Layer 26: Conv, input device: cuda:0 Layer 26: Conv, output device: cuda:0 Layer 27: PWCMamba, input device: cuda:0 Layer 27: PWCMamba, output device: cuda:0 Layer 28: Detect, input device: cuda:0 Layer 28: Detect, output device: cuda:0 YOLOv8pwcm summary: 643 layers, 2,170,157 parameters, 2,170,141 gradients, 5.0 GFLOPs Freezing layer 'model.28.dfl.conv.weight' AMP: running Automatic Mixed Precision (AMP) checks... AMP: checks skipped ⚠️. Unable to load YOLO11n for AMP checks due to possible Ultralytics package modifications. Setting 'amp=True'. If you experience zero-mAP or NaN losses you can disable AMP with amp=False. WARNING ⚠️ imgsz=[768] must be multiple of max stride 51, updating to [816] train: Scanning E:\ultralytics-v8.3.63\datasets\Motogp.v1i.yolov8\train\labels.cache... 97 images, 11 backgrounds, 0 corrupt: 100%|██████████| 97/97 [00:00<?, ?it/s] WARNING ⚠️ cache='ram' may produce non-deterministic training results. Consider cache='disk' as a deterministic alternative if your disk space allows. train: Caching images (0.1GB RAM): 100%|██████████| 97/97 [00:00<00:00, 549.04it/s] val: Scanning E:\ultralytics-v8.3.63\datasets\Motogp.v1i.yolov8\valid\labels.cache... 28 images, 4 backgrounds, 0 corrupt: 100%|██████████| 28/28 [00:00<?, ?it/s] WARNING ⚠️ cache='ram' may produce non-deterministic training results. Consider cache='disk' as a deterministic alternative if your disk space allows. val: Caching images (0.0GB RAM): 100%|██████████| 28/28 [00:00<00:00, 282.27it/s] WARNING ⚠️ imgsz=[816] must be multiple of max stride 32, updating to [832] No module named 'seaborn' optimizer: 'optimizer=auto' found, ignoring 'lr0=0.01' and 'momentum=0.937' and determining best 'optimizer', 'lr0' and 'momentum' automatically... optimizer: AdamW(lr=0.002, momentum=0.9) with parameter groups 145 weight(decay=0.0), 177 weight(decay=0.0005), 161 bias(decay=0.0) Image sizes 816 train, 816 val Using 2 dataloader workers Logging results to runs\detect\train12 Starting training for 100 epochs... Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size Layer 0: Conv, input device: cuda:0 0%| | 0/7 [00:00<?, ?it/s]Layer 0: Conv, output device: cuda:0 Layer 1: Conv, input device: cuda:0 Layer 1: Conv, output device: cuda:0 Layer 2: C2f, input device: cuda:0 Layer 2: C2f, output device: cuda:0 Layer 3: Conv, input device: cuda:0 Layer 3: Conv, output device: cuda:0 Layer 4: C2f, input device: cuda:0 Layer 4: C2f, output device: cuda:0 Layer 5: Conv, input device: cuda:0 Layer 5: Conv, output device: cuda:0 Layer 6: C2f, input device: cuda:0 Layer 6: C2f, output device: cuda:0 Layer 7: Conv, input device: cuda:0 Layer 7: Conv, output device: cuda:0 Layer 8: PWCMamba, input device: cuda:0 Layer 8: PWCMamba, output device: cuda:0 Layer 9: SPPF, input device: cuda:0 Layer 9: SPPF, output device: cuda:0 Layer 10: Conv, input device: cuda:0 Layer 10: Conv, output device: cuda:0 Layer 11: Upsample, input device: cuda:0 Layer 11: Upsample, output device: cuda:0 Layer 12: Concat, input device: cuda:0 Concat层输入张量数量: 2 输入0形状: torch.Size([16, 64, 52, 52]) (通道数: 64) 输入1形状: torch.Size([16, 128, 51, 51]) (通道数: 128) Concat拼接失败: Sizes of tensors must match except in dimension 1. Expected size 52 but got size 51 for tensor number 1 in the list. 0%| | 0/7 [00:00<?, ?it/s] Traceback (most recent call last): File "E:\ultralytics-v8.3.63\ultralytics\models\yolo\pwcmamba\ceshi.py", line 21, in <module> train() File "E:\ultralytics-v8.3.63\ultralytics\models\yolo\pwcmamba\ceshi.py", line 8, in train results = model.train( File "E:\ultralytics-v8.3.63\ultralytics\engine\model.py", line 806, in train self.trainer.train() File "E:\ultralytics-v8.3.63\ultralytics\engine\trainer.py", line 207, in train self._do_train(world_size) File "E:\ultralytics-v8.3.63\ultralytics\engine\trainer.py", line 381, in _do_train self.loss, self.loss_items = self.model(batch) File "D:\anaconda\envs\mamba\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "D:\anaconda\envs\mamba\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "E:\ultralytics-v8.3.63\ultralytics\nn\tasks.py", line 525, in forward return super().forward(x, *args, **kwargs) File "E:\ultralytics-v8.3.63\ultralytics\nn\tasks.py", line 110, in forward return self.predict(x, *args, **kwargs) File "E:\ultralytics-v8.3.63\ultralytics\nn\tasks.py", line 128, in predict return self._predict_once(x, profile, visualize, embed) File "E:\ultralytics-v8.3.63\ultralytics\nn\tasks.py", line 175, in _predict_once x = m(x) # 前向传播 File "D:\anaconda\envs\mamba\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "D:\anaconda\envs\mamba\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "E:\ultralytics-v8.3.63\ultralytics\nn\modules\conv.py", line 350, in forward result = torch.cat(x, dim=self.d) RuntimeError: Sizes of tensors must match except in dimension 1. Expected size 52 but got size 51 for tensor number 1 in the list. 进程已结束,退出代码为 1
09-03
warnings.warn( Ultralytics YOLOv8.0.98 Python-3.9.23 torch-2.7.1+cu126 CUDA:0 (NVIDIA GeForce RTX 4060 Laptop GPU, 8188MiB) yolo\engine\trainer: task=detect, mode=train, model=yolov8n.pt, data=weilong.yaml, epochs=500, patience=50, batch=32, imgsz=640, save=True, save_period=-1, cache=False, device=0, workers=8, project=None, name=None, exist_ok=False, pretrained=False, optimizer=SGD, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=0, resume=False, amp=True, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, show=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, vid_stride=1, line_width=None, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, boxes=True, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=False, opset=None, workspace=4, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, label_smoothing=0.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0, cfg=None, v5loader=False, tracker=botsort.yaml, save_dir=runs\detect\train Overriding model.yaml nc=80 with nc=1 from n params module arguments 0 -1 1 464 ultralytics.nn.modules.conv.Conv [3, 16, 3, 2] 1 -1 1 4672 ultralytics.nn.modules.conv.Conv [16, 32, 3, 2] 2 -1 1 7360 ultralytics.nn.modules.block.C2f [32, 32, 1, True] 3 -1 1 18560 ultralytics.nn.modules.conv.Conv [32, 64, 3, 2] 4 -1 2 49664 ultralytics.nn.modules.block.C2f [64, 64, 2, True] 5 -1 1 73984 ultralytics.nn.modules.conv.Conv [64, 128, 3, 2] 6 -1 2 197632 ultralytics.nn.modules.block.C2f [128, 128, 2, True] 7 -1 1 295424 ultralytics.nn.modules.conv.Conv [128, 256, 3, 2] 8 -1 1 460288 ultralytics.nn.modules.block.C2f [256, 256, 1, True] 9 -1 1 164608 ultralytics.nn.modules.block.SPPF [256, 256, 5] 10 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] 11 [-1, 6] 1 0 ultralytics.nn.modules.conv.Concat [1] 12 -1 1 148224 ultralytics.nn.modules.block.C2f [384, 128, 1] 13 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] 14 [-1, 4] 1 0 ultralytics.nn.modules.conv.Concat [1] 15 -1 1 37248 ultralytics.nn.modules.block.C2f [192, 64, 1] 16 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2] 17 [-1, 12] 1 0 ultralytics.nn.modules.conv.Concat [1] 18 -1 1 123648 ultralytics.nn.modules.block.C2f [192, 128, 1] 19 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2] 20 [-1, 9] 1 0 ultralytics.nn.modules.conv.Concat [1] 21 -1 1 493056 ultralytics.nn.modules.block.C2f [384, 256, 1] 22 [15, 18, 21] 1 751507 ultralytics.nn.modules.head.Detect [1, [64, 128, 256]] Model summary: 225 layers, 3011043 parameters, 3011027 gradients, 8.2 GFLOPs Transferred 319/355 items from pretrained weights AMP: running Automatic Mixed Precision (AMP) checks with YOLOv8n... D:\yolov8.98\ultralytics-v8.0.98\ultralytics\yolo\engine\trainer.py:658: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead. with torch.cuda.amp.autocast(True): AMP: checks passed D:\yolov8.98\ultralytics-v8.0.98\ultralytics\yolo\engine\trainer.py:218: FutureWarning: `torch.cuda.amp.GradScaler(args...)` is deprecated. Please use `torch.amp.GradScaler('cuda', args...)` instead. self.scaler = amp.GradScaler(enabled=self.amp) optimizer: SGD(lr=0.01) with parameter groups 57 weight(decay=0.0), 64 weight(decay=0.0005), 63 bias train: Scanning D:\yolov8.98\ultralytics-v8.0.98\weilong\labels\train.cache... 5 images, 0 backgrounds, 0 corrupt: 100%|██████████| 5/5 [00:00<?, ?it/s] D:\ai\anaconda\envs\py391\lib\site-packages\requests\__init__.py:86: RequestsDependencyWarning: Unable to find acceptable character detection dependency (chardet or charset_normalizer). warnings.warn( D:\ai\anaconda\envs\py391\lib\site-packages\requests\__init__.py:86: RequestsDependencyWarning: Unable to find acceptable character detection dependency (chardet or charset_normalizer). warnings.warn( D:\ai\anaconda\envs\py391\lib\site-packages\requests\__init__.py:86: RequestsDependencyWarning: Unable to find acceptable character detection dependency (chardet or charset_normalizer). warnings.warn( D:\ai\anaconda\envs\py391\lib\site-packages\requests\__init__.py:86: RequestsDependencyWarning: Unable to find acceptable character detection dependency (chardet or charset_normalizer). warnings.warn( val: Scanning D:\yolov8.98\ultralytics-v8.0.98\weilong\labels\val.cache... 2 images, 0 backgrounds, 0 corrupt: 100%|██████████| 2/2 [00:00<?, ?it/s] D:\ai\anaconda\envs\py391\lib\site-packages\requests\__init__.py:86: RequestsDependencyWarning: Unable to find acceptable character detection dependency (chardet or charset_normalizer). warnings.warn( Image sizes 640 train, 640 val Using 5 dataloader workers Logging results to runs\detect\train Starting training for 500 epochs... Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 0%| | 0/1 [00:00<?, ?it/s]D:\ai\anaconda\envs\py391\lib\site-packages\requests\__init__.py:86: RequestsDependencyWarning: Unable to find acceptable character detection dependency (chardet or charset_normalizer). No module named 'seaborn' warnings.warn( D:\ai\anaconda\envs\py391\lib\site-packages\requests\__init__.py:86: RequestsDependencyWarning: Unable to find acceptable character detection dependency (chardet or charset_normalizer). warnings.warn( New https://pypi.org/project/ultralytics/8.3.179 available Update with 'pip install -U ultralytics' Ultralytics YOLOv8.0.98 Python-3.9.23 torch-2.7.1+cu126 CUDA:0 (NVIDIA GeForce RTX 4060 Laptop GPU, 8188MiB) yolo\engine\trainer: task=detect, mode=train, model=yolov8n.pt, data=weilong.yaml, epochs=500, patience=50, batch=32, imgsz=640, save=True, save_period=-1, cache=False, device=0, workers=8, project=None, name=None, exist_ok=False, pretrained=False, optimizer=SGD, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=0, resume=False, amp=True, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, show=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, vid_stride=1, line_width=None, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, boxes=True, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=False, opset=None, workspace=4, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, label_smoothing=0.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0, cfg=None, v5loader=False, tracker=botsort.yaml, save_dir=runs\detect\train2 Overriding model.yaml nc=80 with nc=1 from n params module arguments 0 -1 1 464 ultralytics.nn.modules.conv.Conv [3, 16, 3, 2] 1 -1 1 4672 ultralytics.nn.modules.conv.Conv [16, 32, 3, 2] 2 -1 1 7360 ultralytics.nn.modules.block.C2f [32, 32, 1, True] 3 -1 1 18560 ultralytics.nn.modules.conv.Conv [32, 64, 3, 2] 4 -1 2 49664 ultralytics.nn.modules.block.C2f [64, 64, 2, True] 5 -1 1 73984 ultralytics.nn.modules.conv.Conv [64, 128, 3, 2] 6 -1 2 197632 ultralytics.nn.modules.block.C2f [128, 128, 2, True] 7 -1 1 295424 ultralytics.nn.modules.conv.Conv [128, 256, 3, 2] 8 -1 1 460288 ultralytics.nn.modules.block.C2f [256, 256, 1, True] 9 -1 1 164608 ultralytics.nn.modules.block.SPPF [256, 256, 5] 10 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] 11 [-1, 6] 1 0 ultralytics.nn.modules.conv.Concat [1] 12 -1 1 148224 ultralytics.nn.modules.block.C2f [384, 128, 1] 13 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] 14 [-1, 4] 1 0 ultralytics.nn.modules.conv.Concat [1] 15 -1 1 37248 ultralytics.nn.modules.block.C2f [192, 64, 1] 16 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2] 17 [-1, 12] 1 0 ultralytics.nn.modules.conv.Concat [1] 18 -1 1 123648 ultralytics.nn.modules.block.C2f [192, 128, 1] 19 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2] 20 [-1, 9] 1 0 ultralytics.nn.modules.conv.Concat [1] 21 -1 1 493056 ultralytics.nn.modules.block.C2f [384, 256, 1] 22 [15, 18, 21] 1 751507 ultralytics.nn.modules.head.Detect [1, [64, 128, 256]] New https://pypi.org/project/ultralytics/8.3.179 available Update with 'pip install -U ultralytics' Ultralytics YOLOv8.0.98 Python-3.9.23 torch-2.7.1+cu126 CUDA:0 (NVIDIA GeForce RTX 4060 Laptop GPU, 8188MiB) Model summary: 225 layers, 3011043 parameters, 3011027 gradients, 8.2 GFLOPs Transferred 319/355 items from pretrained weights yolo\engine\trainer: task=detect, mode=train, model=yolov8n.pt, data=weilong.yaml, epochs=500, patience=50, batch=32, imgsz=640, save=True, save_period=-1, cache=False, device=0, workers=8, project=None, name=None, exist_ok=False, pretrained=False, optimizer=SGD, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=0, resume=False, amp=True, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, show=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, vid_stride=1, line_width=None, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, boxes=True, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=False, opset=None, workspace=4, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, label_smoothing=0.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0, cfg=None, v5loader=False, tracker=botsort.yaml, save_dir=runs\detect\train3 Overriding model.yaml nc=80 with nc=1 from n params module arguments 0 -1 1 464 ultralytics.nn.modules.conv.Conv [3, 16, 3, 2] 1 -1 1 4672 ultralytics.nn.modules.conv.Conv [16, 32, 3, 2] 2 -1 1 7360 ultralytics.nn.modules.block.C2f [32, 32, 1, True] 3 -1 1 18560 ultralytics.nn.modules.conv.Conv [32, 64, 3, 2] 4 -1 2 49664 ultralytics.nn.modules.block.C2f [64, 64, 2, True] 5 -1 1 73984 ultralytics.nn.modules.conv.Conv [64, 128, 3, 2] 6 -1 2 197632 ultralytics.nn.modules.block.C2f [128, 128, 2, True] 7 -1 1 295424 ultralytics.nn.modules.conv.Conv [128, 256, 3, 2] 8 -1 1 460288 ultralytics.nn.modules.block.C2f [256, 256, 1, True] 9 -1 1 164608 ultralytics.nn.modules.block.SPPF [256, 256, 5] 10 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] 11 [-1, 6] 1 0 ultralytics.nn.modules.conv.Concat [1] 12 -1 1 148224 ultralytics.nn.modules.block.C2f [384, 128, 1] 13 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] 14 [-1, 4] 1 0 ultralytics.nn.modules.conv.Concat [1] 15 -1 1 37248 ultralytics.nn.modules.block.C2f [192, 64, 1] 16 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2] 17 [-1, 12] 1 0 ultralytics.nn.modules.conv.Concat [1] 18 -1 1 123648 ultralytics.nn.modules.block.C2f [192, 128, 1] 19 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2] 20 [-1, 9] 1 0 ultralytics.nn.modules.conv.Concat [1] 21 -1 1 493056 ultralytics.nn.modules.block.C2f [384, 256, 1] 22 [15, 18, 21] 1 751507 ultralytics.nn.modules.head.Detect [1, [64, 128, 256]] AMP: running Automatic Mixed Precision (AMP) checks with YOLOv8n... Model summary: 225 layers, 3011043 parameters, 3011027 gradients, 8.2 GFLOPs Transferred 319/355 items from pretrained weights AMP: running Automatic Mixed Precision (AMP) checks with YOLOv8n... D:\yolov8.98\ultralytics-v8.0.98\ultralytics\yolo\engine\trainer.py:658: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead. with torch.cuda.amp.autocast(True): D:\yolov8.98\ultralytics-v8.0.98\ultralytics\yolo\engine\trainer.py:658: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead. with torch.cuda.amp.autocast(True): AMP: checks passed D:\yolov8.98\ultralytics-v8.0.98\ultralytics\yolo\engine\trainer.py:218: FutureWarning: `torch.cuda.amp.GradScaler(args...)` is deprecated. Please use `torch.amp.GradScaler('cuda', args...)` instead. self.scaler = amp.GradScaler(enabled=self.amp) optimizer: SGD(lr=0.01) with parameter groups 57 weight(decay=0.0), 64 weight(decay=0.0005), 63 bias train: Scanning D:\yolov8.98\ultralytics-v8.0.98\weilong\labels\train.cache... 5 images, 0 backgrounds, 0 corrupt: 100%|██████████| 5/5 [00:00<?, ?it/s] Traceback (most recent call last): File "<string>", line 1, in <module> File "D:\ai\anaconda\envs\py391\lib\multiprocessing\spawn.py", line 116, in spawn_main exitcode = _main(fd, parent_sentinel) File "D:\ai\anaconda\envs\py391\lib\multiprocessing\spawn.py", line 125, in _main prepare(preparation_data) File "D:\ai\anaconda\envs\py391\lib\multiprocessing\spawn.py", line 236, in prepare _fixup_main_from_path(data['init_main_from_path']) File "D:\ai\anaconda\envs\py391\lib\multiprocessing\spawn.py", line 287, in _fixup_main_from_path main_content = runpy.run_path(main_path, File "D:\ai\anaconda\envs\py391\lib\runpy.py", line 288, in run_path return _run_module_code(code, init_globals, run_name, File "D:\ai\anaconda\envs\py391\lib\runpy.py", line 97, in _run_module_code _run_code(code, mod_globals, init_globals, File "D:\ai\anaconda\envs\py391\lib\runpy.py", line 87, in _run_code exec(code, run_globals) File "D:\yolov8.98\ultralytics-v8.0.98\train.py", line 3, in <module> a1.train( File "D:\yolov8.98\ultralytics-v8.0.98\ultralytics\yolo\engine\model.py", line 370, in train self.trainer.train() File "D:\yolov8.98\ultralytics-v8.0.98\ultralytics\yolo\engine\trainer.py", line 191, in train self._do_train(world_size) File "D:\yolov8.98\ultralytics-v8.0.98\ultralytics\yolo\engine\trainer.py", line 268, in _do_train self._setup_train(world_size) File "D:\yolov8.98\ultralytics-v8.0.98\ultralytics\yolo\engine\trainer.py", line 250, in _setup_train self.train_loader = self.get_dataloader(self.trainset, batch_size=batch_size, rank=RANK, mode='train') File "D:\yolov8.98\ultralytics-v8.0.98\ultralytics\yolo\v8\detect\train.py", line 65, in get_dataloader return build_dataloader(dataset, batch_size, workers, shuffle, rank) # return dataloader File "D:\yolov8.98\ultralytics-v8.0.98\ultralytics\yolo\data\build.py", line 100, in build_dataloader return InfiniteDataLoader(dataset=dataset, File "D:\yolov8.98\ultralytics-v8.0.98\ultralytics\yolo\data\build.py", line 29, in __init__ self.iterator = super().__iter__() File "D:\ai\anaconda\envs\py391\lib\site-packages\torch\utils\data\dataloader.py", line 493, in __iter__ return self._get_iterator() File "D:\ai\anaconda\envs\py391\lib\site-packages\torch\utils\data\dataloader.py", line 424, in _get_iterator return _MultiProcessingDataLoaderIter(self) File "D:\ai\anaconda\envs\py391\lib\site-packages\torch\utils\data\dataloader.py", line 1171, in __init__ w.start() File "D:\ai\anaconda\envs\py391\lib\multiprocessing\process.py", line 121, in start self._popen = self._Popen(self) File "D:\ai\anaconda\envs\py391\lib\multiprocessing\context.py", line 224, in _Popen return _default_context.get_context().Process._Popen(process_obj) File "D:\ai\anaconda\envs\py391\lib\multiprocessing\context.py", line 327, in _Popen return Popen(process_obj) File "D:\ai\anaconda\envs\py391\lib\multiprocessing\popen_spawn_win32.py", line 45, in __init__ prep_data = spawn.get_preparation_data(process_obj._name) File "D:\ai\anaconda\envs\py391\lib\multiprocessing\spawn.py", line 154, in get_preparation_data _check_not_importing_main() File "D:\ai\anaconda\envs\py391\lib\multiprocessing\spawn.py", line 134, in _check_not_importing_main raise RuntimeError(''' RuntimeError: An attempt has been made to start a new process before the current process has finished its bootstrapping phase. This probably means that you are not using fork to start your child processes and you have forgotten to use the proper idiom in the main module: if __name__ == '__main__': freeze_support() ... The "freeze_support()" line can be omitted if the program is not going to be frozen to produce an executable. Ultralytics YOLOv8.0.98 Python-3.9.23 torch-2.7.1+cu126 CUDA:0 (NVIDIA GeForce RTX 4060 Laptop GPU, 8188MiB) yolo\engine\trainer: task=detect, mode=train, model=yolov8n.pt, data=weilong.yaml, epochs=500, patience=50, batch=32, imgsz=640, save=True, save_period=-1, cache=False, device=0, workers=8, project=None, name=None, exist_ok=False, pretrained=False, optimizer=SGD, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=0, resume=False, amp=True, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, show=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, vid_stride=1, line_width=None, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, boxes=True, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=False, opset=None, workspace=4, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, label_smoothing=0.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0, cfg=None, v5loader=False, tracker=botsort.yaml, save_dir=runs\detect\train4 Overriding model.yaml nc=80 with nc=1 from n params module arguments 0 -1 1 464 ultralytics.nn.modules.conv.Conv [3, 16, 3, 2] 1 -1 1 4672 ultralytics.nn.modules.conv.Conv [16, 32, 3, 2] 2 -1 1 7360 ultralytics.nn.modules.block.C2f [32, 32, 1, True] 3 -1 1 18560 ultralytics.nn.modules.conv.Conv [32, 64, 3, 2] AMP: checks passed 4 -1 2 49664 ultralytics.nn.modules.block.C2f [64, 64, 2, True] D:\yolov8.98\ultralytics-v8.0.98\ultralytics\yolo\engine\trainer.py:218: FutureWarning: `torch.cuda.amp.GradScaler(args...)` is deprecated. Please use `torch.amp.GradScaler('cuda', args...)` instead. self.scaler = amp.GradScaler(enabled=self.amp) 5 -1 1 73984 ultralytics.nn.modules.conv.Conv [64, 128, 3, 2] optimizer: SGD(lr=0.01) with parameter groups 57 weight(decay=0.0), 64 weight(decay=0.0005), 63 bias 6 -1 2 197632 ultralytics.nn.modules.block.C2f [128, 128, 2, True] 7 -1 1 295424 ultralytics.nn.modules.conv.Conv [128, 256, 3, 2] train: Scanning D:\yolov8.98\ultralytics-v8.0.98\weilong\labels\train.cache... 5 images, 0 backgrounds, 0 corrupt: 100%|██████████| 5/5 [00:00<?, ?it/s] 8 -1 1 460288 ultralytics.nn.modules.block.C2f [256, 256, 1, True] Traceback (most recent call last): File "<string>", line 1, in <module> 9 -1 1 164608 ultralytics.nn.modules.block.SPPF [256, 256, 5] 10 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] 11 [-1, 6] 1 0 ultralytics.nn.modules.conv.Concat [1] File "D:\ai\anaconda\envs\py391\lib\multiprocessing\spawn.py", line 116, in spawn_main exitcode = _main(fd, parent_sentinel) File "D:\ai\anaconda\envs\py391\lib\multiprocessing\spawn.py", line 125, in _main prepare(preparation_data) File "D:\ai\anaconda\envs\py391\lib\multiprocessing\spawn.py", line 236, in prepare _fixup_main_from_path(data['init_main_from_path']) File "D:\ai\anaconda\envs\py391\lib\multiprocessing\spawn.py", line 287, in _fixup_main_from_path 12 -1 1 148224 ultralytics.nn.modules.block.C2f [384, 128, 1] 13 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] 14 [-1, 4] 1 0 ultralytics.nn.modules.conv.Concat [1] main_content = runpy.run_path(main_path, File "D:\ai\anaconda\envs\py391\lib\runpy.py", line 288, in run_path return _run_module_code(code, init_globals, run_name, File "D:\ai\anaconda\envs\py391\lib\runpy.py", line 97, in _run_module_code _run_code(code, mod_globals, init_globals, File "D:\ai\anaconda\envs\py391\lib\runpy.py", line 87, in _run_code exec(code, run_globals) File "D:\yolov8.98\ultralytics-v8.0.98\train.py", line 3, in <module> 15 -1 1 37248 ultralytics.nn.modules.block.C2f [192, 64, 1] a1.train( File "D:\yolov8.98\ultralytics-v8.0.98\ultralytics\yolo\engine\model.py", line 370, in train self.trainer.train() File "D:\yolov8.98\ultralytics-v8.0.98\ultralytics\yolo\engine\trainer.py", line 191, in train 16 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2] 17 [-1, 12] 1 0 ultralytics.nn.modules.conv.Concat [1] self._do_train(world_size) File "D:\yolov8.98\ultralytics-v8.0.98\ultralytics\yolo\engine\trainer.py", line 268, in _do_train self._setup_train(world_size) File "D:\yolov8.98\ultralytics-v8.0.98\ultralytics\yolo\engine\trainer.py", line 250, in _setup_train self.train_loader = self.get_dataloader(self.trainset, batch_size=batch_size, rank=RANK, mode='train') File "D:\yolov8.98\ultralytics-v8.0.98\ultralytics\yolo\v8\detect\train.py", line 65, in get_dataloader return build_dataloader(dataset, batch_size, workers, shuffle, rank) # return dataloader File "D:\yolov8.98\ultralytics-v8.0.98\ultralytics\yolo\data\build.py", line 100, in build_dataloader return InfiniteDataLoader(dataset=dataset, File "D:\yolov8.98\ultralytics-v8.0.98\ultralytics\yolo\data\build.py", line 29, in __init__ 18 -1 1 123648 ultralytics.nn.modules.block.C2f [192, 128, 1] self.iterator = super().__iter__() File "D:\ai\anaconda\envs\py391\lib\site-packages\torch\utils\data\dataloader.py", line 493, in __iter__ return self._get_iterator() File "D:\ai\anaconda\envs\py391\lib\site-packages\torch\utils\data\dataloader.py", line 424, in _get_iterator return _MultiProcessingDataLoaderIter(self) File "D:\ai\anaconda\envs\py391\lib\site-packages\torch\utils\data\dataloader.py", line 1171, in __init__ w.start() File "D:\ai\anaconda\envs\py391\lib\multiprocessing\process.py", line 121, in start 19 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2] 20 [-1, 9] 1 0 ultralytics.nn.modules.conv.Concat [1] self._popen = self._Popen(self) File "D:\ai\anaconda\envs\py391\lib\multiprocessing\context.py", line 224, in _Popen return _default_context.get_context().Process._Popen(process_obj) File "D:\ai\anaconda\envs\py391\lib\multiprocessing\context.py", line 327, in _Popen return Popen(process_obj) File "D:\ai\anaconda\envs\py391\lib\multiprocessing\popen_spawn_win32.py", line 45, in __init__ prep_data = spawn.get_preparation_data(process_obj._name) File "D:\ai\anaconda\envs\py391\lib\multiprocessing\spawn.py", line 154, in get_preparation_data _check_not_importing_main() File "D:\ai\anaconda\envs\py391\lib\multiprocessing\spawn.py", line 134, in _check_not_importing_main raise RuntimeError(''' RuntimeError: An attempt has been made to start a new process before the current process has finished its bootstrapping phase. This probably means that you are not using fork to start your child processes and you have forgotten to use the proper idiom in the main module: if __name__ == '__main__': freeze_support() ... The "freeze_support()" line can be omitted if the program is not going to be frozen to produce an executable. 21 -1 1 493056 ultralytics.nn.modules.block.C2f [384, 256, 1] 22 [15, 18, 21] 1 751507 ultralytics.nn.modules.head.Detect [1, [64, 128, 256]] Model summary: 225 layers, 3011043 parameters, 3011027 gradients, 8.2 GFLOPs Transferred 319/355 items from pretrained weights AMP: running Automatic Mixed Precision (AMP) checks with YOLOv8n... Ultralytics YOLOv8.0.98 Python-3.9.23 torch-2.7.1+cu126 CUDA:0 (NVIDIA GeForce RTX 4060 Laptop GPU, 8188MiB) yolo\engine\trainer: task=detect, mode=train, model=yolov8n.pt, data=weilong.yaml, epochs=500, patience=50, batch=32, imgsz=640, save=True, save_period=-1, cache=False, device=0, workers=8, project=None, name=None, exist_ok=False, pretrained=False, optimizer=SGD, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=0, resume=False, amp=True, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, show=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, vid_stride=1, line_width=None, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, boxes=True, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=False, opset=None, workspace=4, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, label_smoothing=0.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0, cfg=None, v5loader=False, tracker=botsort.yaml, save_dir=runs\detect\train5 Overriding model.yaml nc=80 with nc=1 from n params module arguments 0 -1 1 464 ultralytics.nn.modules.conv.Conv [3, 16, 3, 2] 1 -1 1 4672 ultralytics.nn.modules.conv.Conv [16, 32, 3, 2] 2 -1 1 7360 ultralytics.nn.modules.block.C2f [32, 32, 1, True] 3 -1 1 18560 ultralytics.nn.modules.conv.Conv [32, 64, 3, 2] 4 -1 2 49664 ultralytics.nn.modules.block.C2f [64, 64, 2, True] 5 -1 1 73984 ultralytics.nn.modules.conv.Conv [64, 128, 3, 2] 6 -1 2 197632 ultralytics.nn.modules.block.C2f [128, 128, 2, True] 7 -1 1 295424 ultralytics.nn.modules.conv.Conv [128, 256, 3, 2] 8 -1 1 460288 ultralytics.nn.modules.block.C2f [256, 256, 1, True] 9 -1 1 164608 ultralytics.nn.modules.block.SPPF [256, 256, 5] 10 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] 11 [-1, 6] 1 0 ultralytics.nn.modules.conv.Concat [1] 12 -1 1 148224 ultralytics.nn.modules.block.C2f [384, 128, 1] 13 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] 14 [-1, 4] 1 0 ultralytics.nn.modules.conv.Concat [1] 15 -1 1 37248 ultralytics.nn.modules.block.C2f [192, 64, 1] 16 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2] 17 [-1, 12] 1 0 ultralytics.nn.modules.conv.Concat [1] 18 -1 1 123648 ultralytics.nn.modules.block.C2f [192, 128, 1] 19 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2] 20 [-1, 9] 1 0 ultralytics.nn.modules.conv.Concat [1] 21 -1 1 493056 ultralytics.nn.modules.block.C2f [384, 256, 1] 22 [15, 18, 21] 1 751507 ultralytics.nn.modules.head.Detect [1, [64, 128, 256]] Model summary: 225 layers, 3011043 parameters, 3011027 gradients, 8.2 GFLOPs Transferred 319/355 items from pretrained weights AMP: running Automatic Mixed Precision (AMP) checks with YOLOv8n... New https://pypi.org/project/ultralytics/8.3.179 available Update with 'pip install -U ultralytics' Ultralytics YOLOv8.0.98 Python-3.9.23 torch-2.7.1+cu126 CUDA:0 (NVIDIA GeForce RTX 4060 Laptop GPU, 8188MiB) yolo\engine\trainer: task=detect, mode=train, model=yolov8n.pt, data=weilong.yaml, epochs=500, patience=50, batch=32, imgsz=640, save=True, save_period=-1, cache=False, device=0, workers=8, project=None, name=None, exist_ok=False, pretrained=False, optimizer=SGD, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=0, resume=False, amp=True, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, show=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, vid_stride=1, line_width=None, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, boxes=True, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=False, opset=None, workspace=4, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, label_smoothing=0.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0, cfg=None, v5loader=False, tracker=botsort.yaml, save_dir=runs\detect\train6 Overriding model.yaml nc=80 with nc=1 from n params module arguments 0 -1 1 464 ultralytics.nn.modules.conv.Conv [3, 16, 3, 2] 1 -1 1 4672 ultralytics.nn.modules.conv.Conv [16, 32, 3, 2] 2 -1 1 7360 ultralytics.nn.modules.block.C2f [32, 32, 1, True] 3 -1 1 18560 ultralytics.nn.modules.conv.Conv [32, 64, 3, 2] 4 -1 2 49664 ultralytics.nn.modules.block.C2f [64, 64, 2, True] 5 -1 1 73984 ultralytics.nn.modules.conv.Conv [64, 128, 3, 2] 6 -1 2 197632 ultralytics.nn.modules.block.C2f [128, 128, 2, True] 7 -1 1 295424 ultralytics.nn.modules.conv.Conv [128, 256, 3, 2] 8 -1 1 460288 ultralytics.nn.modules.block.C2f [256, 256, 1, True] 9 -1 1 164608 ultralytics.nn.modules.block.SPPF [256, 256, 5] 10 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] 11 [-1, 6] 1 0 ultralytics.nn.modules.conv.Concat [1] 12 -1 1 148224 ultralytics.nn.modules.block.C2f [384, 128, 1] 13 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] 14 [-1, 4] 1 0 ultralytics.nn.modules.conv.Concat [1] 15 -1 1 37248 ultralytics.nn.modules.block.C2f [192, 64, 1] 16 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2] 17 [-1, 12] 1 0 ultralytics.nn.modules.conv.Concat [1] 18 -1 1 123648 ultralytics.nn.modules.block.C2f [192, 128, 1] 19 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2] 20 [-1, 9] 1 0 ultralytics.nn.modules.conv.Concat [1] 21 -1 1 493056 ultralytics.nn.modules.block.C2f [384, 256, 1] 22 [15, 18, 21] 1 751507 ultralytics.nn.modules.head.Detect [1, [64, 128, 256]] Model summary: 225 layers, 3011043 parameters, 3011027 gradients, 8.2 GFLOPs Transferred 319/355 items from pretrained weights D:\yolov8.98\ultralytics-v8.0.98\ultralytics\yolo\engine\trainer.py:658: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead. with torch.cuda.amp.autocast(True): AMP: running Automatic Mixed Precision (AMP) checks with YOLOv8n... AMP: checks passed D:\yolov8.98\ultralytics-v8.0.98\ultralytics\yolo\engine\trainer.py:218: FutureWarning: `torch.cuda.amp.GradScaler(args...)` is deprecated. Please use `torch.amp.GradScaler('cuda', args...)` instead. self.scaler = amp.GradScaler(enabled=self.amp) optimizer: SGD(lr=0.01) with parameter groups 57 weight(decay=0.0), 64 weight(decay=0.0005), 63 bias train: Scanning D:\yolov8.98\ultralytics-v8.0.98\weilong\labels\train.cache... 5 images, 0 backgrounds, 0 corrupt: 100%|██████████| 5/5 [00:00<?, ?it/s] Traceback (most recent call last): File "<string>", line 1, in <module> File "D:\ai\anaconda\envs\py391\lib\multiprocessing\spawn.py", line 116, in spawn_main exitcode = _main(fd, parent_sentinel) File "D:\ai\anaconda\envs\py391\lib\multiprocessing\spawn.py", line 125, in _main prepare(preparation_data) File "D:\ai\anaconda\envs\py391\lib\multiprocessing\spawn.py", line 236, in prepare _fixup_main_from_path(data['init_main_from_path']) File "D:\ai\anaconda\envs\py391\lib\multiprocessing\spawn.py", line 287, in _fixup_main_from_path main_content = runpy.run_path(main_path, File "D:\ai\anaconda\envs\py391\lib\runpy.py", line 288, in run_path return _run_module_code(code, init_globals, run_name, File "D:\ai\anaconda\envs\py391\lib\runpy.py", line 97, in _run_module_code _run_code(code, mod_globals, init_globals, File "D:\ai\anaconda\envs\py391\lib\runpy.py", line 87, in _run_code exec(code, run_globals) File "D:\yolov8.98\ultralytics-v8.0.98\train.py", line 3, in <module> a1.train( File "D:\yolov8.98\ultralytics-v8.0.98\ultralytics\yolo\engine\model.py", line 370, in train self.trainer.train() File "D:\yolov8.98\ultralytics-v8.0.98\ultralytics\yolo\engine\trainer.py", line 191, in train self._do_train(world_size) File "D:\yolov8.98\ultralytics-v8.0.98\ultralytics\yolo\engine\trainer.py", line 268, in _do_train self._setup_train(world_size) File "D:\yolov8.98\ultralytics-v8.0.98\ultralytics\yolo\engine\trainer.py", line 250, in _setup_train self.train_loader = self.get_dataloader(self.trainset, batch_size=batch_size, rank=RANK, mode='train') File "D:\yolov8.98\ultralytics-v8.0.98\ultralytics\yolo\v8\detect\train.py", line 65, in get_dataloader return build_dataloader(dataset, batch_size, workers, shuffle, rank) # return dataloader File "D:\yolov8.98\ultralytics-v8.0.98\ultralytics\yolo\data\build.py", line 100, in build_dataloader return InfiniteDataLoader(dataset=dataset, File "D:\yolov8.98\ultralytics-v8.0.98\ultralytics\yolo\data\build.py", line 29, in __init__ self.iterator = super().__iter__() File "D:\ai\anaconda\envs\py391\lib\site-packages\torch\utils\data\dataloader.py", line 493, in __iter__ return self._get_iterator() File "D:\ai\anaconda\envs\py391\lib\site-packages\torch\utils\data\dataloader.py", line 424, in _get_iterator return _MultiProcessingDataLoaderIter(self) File "D:\ai\anaconda\envs\py391\lib\site-packages\torch\utils\data\dataloader.py", line 1171, in __init__ w.start() File "D:\ai\anaconda\envs\py391\lib\multiprocessing\process.py", line 121, in start self._popen = self._Popen(self) File "D:\ai\anaconda\envs\py391\lib\multiprocessing\context.py", line 224, in _Popen return _default_context.get_context().Process._Popen(process_obj) File "D:\ai\anaconda\envs\py391\lib\multiprocessing\context.py", line 327, in _Popen return Popen(process_obj) File "D:\ai\anaconda\envs\py391\lib\multiprocessing\popen_spawn_win32.py", line 45, in __init__ prep_data = spawn.get_preparation_data(process_obj._name) File "D:\ai\anaconda\envs\py391\lib\multiprocessing\spawn.py", line 154, in get_preparation_data _check_not_importing_main() File "D:\ai\anaconda\envs\py391\lib\multiprocessing\spawn.py", line 134, in _check_not_importing_main raise RuntimeError(''' RuntimeError: An attempt has been made to start a new process before the current process has finished its bootstrapping phase. This probably means that you are not using fork to start your child processes and you have forgotten to use the proper idiom in the main module: if __name__ == '__main__': freeze_support() ... The "freeze_support()" line can be omitted if the program is not going to be frozen to produce an executable. D:\yolov8.98\ultralytics-v8.0.98\ultralytics\yolo\engine\trainer.py:658: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead. with torch.cuda.amp.autocast(True): AMP: checks passed D:\yolov8.98\ultralytics-v8.0.98\ultralytics\yolo\engine\trainer.py:218: FutureWarning: `torch.cuda.amp.GradScaler(args...)` is deprecated. Please use `torch.amp.GradScaler('cuda', args...)` instead. self.scaler = amp.GradScaler(enabled=self.amp) optimizer: SGD(lr=0.01) with parameter groups 57 weight(decay=0.0), 64 weight(decay=0.0005), 63 bias train: Scanning D:\yolov8.98\ultralytics-v8.0.98\weilong\labels\train.cache... 5 images, 0 backgrounds, 0 corrupt: 100%|██████████| 5/5 [00:00<?, ?it/s] Traceback (most recent call last): File "<string>", line 1, in <module> File "D:\ai\anaconda\envs\py391\lib\multiprocessing\spawn.py", line 116, in spawn_main exitcode = _main(fd, parent_sentinel) File "D:\ai\anaconda\envs\py391\lib\multiprocessing\spawn.py", line 125, in _main prepare(preparation_data) File "D:\ai\anaconda\envs\py391\lib\multiprocessing\spawn.py", line 236, in prepare _fixup_main_from_path(data['init_main_from_path']) File "D:\ai\anaconda\envs\py391\lib\multiprocessing\spawn.py", line 287, in _fixup_main_from_path main_content = runpy.run_path(main_path, File "D:\ai\anaconda\envs\py391\lib\runpy.py", line 288, in run_path return _run_module_code(code, init_globals, run_name, File "D:\ai\anaconda\envs\py391\lib\runpy.py", line 97, in _run_module_code _run_code(code, mod_globals, init_globals, File "D:\ai\anaconda\envs\py391\lib\runpy.py", line 87, in _run_code exec(code, run_globals) File "D:\yolov8.98\ultralytics-v8.0.98\train.py", line 3, in <module> a1.train( File "D:\yolov8.98\ultralytics-v8.0.98\ultralytics\yolo\engine\model.py", line 370, in train self.trainer.train() File "D:\yolov8.98\ultralytics-v8.0.98\ultralytics\yolo\engine\trainer.py", line 191, in train self._do_train(world_size) File "D:\yolov8.98\ultralytics-v8.0.98\ultralytics\yolo\engine\trainer.py", line 268, in _do_train self._setup_train(world_size) File "D:\yolov8.98\ultralytics-v8.0.98\ultralytics\yolo\engine\trainer.py", line 250, in _setup_train self.train_loader = self.get_dataloader(self.trainset, batch_size=batch_size, rank=RANK, mode='train') File "D:\yolov8.98\ultralytics-v8.0.98\ultralytics\yolo\v8\detect\train.py", line 65, in get_dataloader return build_dataloader(dataset, batch_size, workers, shuffle, rank) # return dataloader File "D:\yolov8.98\ultralytics-v8.0.98\ultralytics\yolo\data\build.py", line 100, in build_dataloader return InfiniteDataLoader(dataset=dataset, File "D:\yolov8.98\ultralytics-v8.0.98\ultralytics\yolo\data\build.py", line 29, in __init__ self.iterator = super().__iter__() File "D:\ai\anaconda\envs\py391\lib\site-packages\torch\utils\data\dataloader.py", line 493, in __iter__ return self._get_iterator() File "D:\ai\anaconda\envs\py391\lib\site-packages\torch\utils\data\dataloader.py", line 424, in _get_iterator return _MultiProcessingDataLoaderIter(self) File "D:\ai\anaconda\envs\py391\lib\site-packages\torch\utils\data\dataloader.py", line 1171, in __init__ w.start() File "D:\ai\anaconda\envs\py391\lib\multiprocessing\process.py", line 121, in start self._popen = self._Popen(self) File "D:\ai\anaconda\envs\py391\lib\multiprocessing\context.py", line 224, in _Popen return _default_context.get_context().Process._Popen(process_obj) File "D:\ai\anaconda\envs\py391\lib\multiprocessing\context.py", line 327, in _Popen return Popen(process_obj) File "D:\ai\anaconda\envs\py391\lib\multiprocessing\popen_spawn_win32.py", line 45, in __init__ prep_data = spawn.get_preparation_data(process_obj._name) File "D:\ai\anaconda\envs\py391\lib\multiprocessing\spawn.py", line 154, in get_preparation_data _check_not_importing_main() File "D:\ai\anaconda\envs\py391\lib\multiprocessing\spawn.py", line 134, in _check_not_importing_main raise RuntimeError(''' RuntimeError: An attempt has been made to start a new process before the current process has finished its bootstrapping phase. This probably means that you are not using fork to start your child processes and you have forgotten to use the proper idiom in the main module: if __name__ == '__main__': freeze_support() ... The "freeze_support()" line can be omitted if the program is not going to be frozen to produce an executable. D:\yolov8.98\ultralytics-v8.0.98\ultralytics\yolo\engine\trainer.py:658: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead. with torch.cuda.amp.autocast(True): AMP: checks passed D:\yolov8.98\ultralytics-v8.0.98\ultralytics\yolo\engine\trainer.py:218: FutureWarning: `torch.cuda.amp.GradScaler(args...)` is deprecated. Please use `torch.amp.GradScaler('cuda', args...)` instead. self.scaler = amp.GradScaler(enabled=self.amp) optimizer: SGD(lr=0.01) with parameter groups 57 weight(decay=0.0), 64 weight(decay=0.0005), 63 bias train: Scanning D:\yolov8.98\ultralytics-v8.0.98\weilong\labels\train.cache... 5 images, 0 backgrounds, 0 corrupt: 100%|██████████| 5/5 [00:00<?, ?it/s] Traceback (most recent call last): File "<string>", line 1, in <module> File "D:\ai\anaconda\envs\py391\lib\multiprocessing\spawn.py", line 116, in spawn_main exitcode = _main(fd, parent_sentinel) File "D:\ai\anaconda\envs\py391\lib\multiprocessing\spawn.py", line 125, in _main prepare(preparation_data) File "D:\ai\anaconda\envs\py391\lib\multiprocessing\spawn.py", line 236, in prepare _fixup_main_from_path(data['init_main_from_path']) File "D:\ai\anaconda\envs\py391\lib\multiprocessing\spawn.py", line 287, in _fixup_main_from_path main_content = runpy.run_path(main_path, File "D:\ai\anaconda\envs\py391\lib\runpy.py", line 288, in run_path return _run_module_code(code, init_globals, run_name, File "D:\ai\anaconda\envs\py391\lib\runpy.py", line 97, in _run_module_code _run_code(code, mod_globals, init_globals, File "D:\ai\anaconda\envs\py391\lib\runpy.py", line 87, in _run_code exec(code, run_globals) File "D:\yolov8.98\ultralytics-v8.0.98\train.py", line 3, in <module> a1.train( File "D:\yolov8.98\ultralytics-v8.0.98\ultralytics\yolo\engine\model.py", line 370, in train self.trainer.train() File "D:\yolov8.98\ultralytics-v8.0.98\ultralytics\yolo\engine\trainer.py", line 191, in train self._do_train(world_size) File "D:\yolov8.98\ultralytics-v8.0.98\ultralytics\yolo\engine\trainer.py", line 268, in _do_train self._setup_train(world_size) File "D:\yolov8.98\ultralytics-v8.0.98\ultralytics\yolo\engine\trainer.py", line 250, in _setup_train self.train_loader = self.get_dataloader(self.trainset, batch_size=batch_size, rank=RANK, mode='train') File "D:\yolov8.98\ultralytics-v8.0.98\ultralytics\yolo\v8\detect\train.py", line 65, in get_dataloader return build_dataloader(dataset, batch_size, workers, shuffle, rank) # return dataloader File "D:\yolov8.98\ultralytics-v8.0.98\ultralytics\yolo\data\build.py", line 100, in build_dataloader return InfiniteDataLoader(dataset=dataset, File "D:\yolov8.98\ultralytics-v8.0.98\ultralytics\yolo\data\build.py", line 29, in __init__ self.iterator = super().__iter__() File "D:\ai\anaconda\envs\py391\lib\site-packages\torch\utils\data\dataloader.py", line 493, in __iter__ return self._get_iterator() File "D:\ai\anaconda\envs\py391\lib\site-packages\torch\utils\data\dataloader.py", line 424, in _get_iterator return _MultiProcessingDataLoaderIter(self) File "D:\ai\anaconda\envs\py391\lib\site-packages\torch\utils\data\dataloader.py", line 1171, in __init__ w.start() File "D:\ai\anaconda\envs\py391\lib\multiprocessing\process.py", line 121, in start self._popen = self._Popen(self) File "D:\ai\anaconda\envs\py391\lib\multiprocessing\context.py", line 224, in _Popen return _default_context.get_context().Process._Popen(process_obj) File "D:\ai\anaconda\envs\py391\lib\multiprocessing\context.py", line 327, in _Popen return Popen(process_obj) File "D:\ai\anaconda\envs\py391\lib\multiprocessing\popen_spawn_win32.py", line 45, in __init__ prep_data = spawn.get_preparation_data(process_obj._name) File "D:\ai\anaconda\envs\py391\lib\multiprocessing\spawn.py", line 154, in get_preparation_data _check_not_importing_main() File "D:\ai\anaconda\envs\py391\lib\multiprocessing\spawn.py", line 134, in _check_not_importing_main raise RuntimeError(''' RuntimeError: An attempt has been made to start a new process before the current process has finished its bootstrapping phase. This probably means that you are not using fork to start your child processes and you have forgotten to use the proper idiom in the main module: if __name__ == '__main__': freeze_support() ... The "freeze_support()" line can be omitted if the program is not going to be frozen to produce an executable. 0%| | 0/1 [00:15<?, ?it/s] Traceback (most recent call last): File "D:\ai\anaconda\envs\py391\lib\site-packages\torch\utils\data\dataloader.py", line 1284, in _try_get_data data = self._data_queue.get(timeout=timeout) File "D:\ai\anaconda\envs\py391\lib\queue.py", line 179, in get raise Empty _queue.Empty The above exception was the direct cause of the following exception: Traceback (most recent call last): File "D:\yolov8.98\ultralytics-v8.0.98\train.py", line 3, in <module> a1.train( File "D:\yolov8.98\ultralytics-v8.0.98\ultralytics\yolo\engine\model.py", line 370, in train self.trainer.train() File "D:\yolov8.98\ultralytics-v8.0.98\ultralytics\yolo\engine\trainer.py", line 191, in train self._do_train(world_size) File "D:\yolov8.98\ultralytics-v8.0.98\ultralytics\yolo\engine\trainer.py", line 306, in _do_train for i, batch in pbar: File "D:\ai\anaconda\envs\py391\lib\site-packages\tqdm\std.py", line 1181, in __iter__ for obj in iterable: File "D:\yolov8.98\ultralytics-v8.0.98\ultralytics\yolo\data\build.py", line 38, in __iter__ yield next(self.iterator) File "D:\ai\anaconda\envs\py391\lib\site-packages\torch\utils\data\dataloader.py", line 733, in __next__ data = self._next_data() File "D:\ai\anaconda\envs\py391\lib\site-packages\torch\utils\data\dataloader.py", line 1491, in _next_data idx, data = self._get_data() File "D:\ai\anaconda\envs\py391\lib\site-packages\torch\utils\data\dataloader.py", line 1443, in _get_data success, data = self._try_get_data() File "D:\ai\anaconda\envs\py391\lib\site-packages\torch\utils\data\dataloader.py", line 1297, in _try_get_data raise RuntimeError( RuntimeError: DataLoader worker (pid(s) 3912, 22312, 32356, 6452) exited unexpectedly
08-16
运行train文件后报错:按照方案一修改后报错:(yolov5_new) PS E:\YOLO\ultralytics-yolo11-main> python train.py New https://pypi.org/project/ultralytics/8.3.225 available 😃 Update with 'pip install -U ultralytics' Ultralytics 8.3.9 🚀 Python-3.8.18 torch-2.0.1+cu117 CUDA:0 (NVIDIA GeForce RTX 4060 Laptop GPU, 8188MiB) engine\trainer: task=detect, mode=train, model=ultralytics/cfg/models/11/yolo11-HGNetV2_1.yaml, data=dataset/data.yaml, epochs=2, time=None, patien ce=100, batch=8, imgsz=416, save=True, save_period=-1, cache=False, device=None, workers=0, project=runs/train, name=exp14, exist_ok=False, pretrai ned=True, optimizer=SGD, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=0, resume=False, amp=Fa lse, fraction=1.0, profile=False, freeze=None, multi_scale=False, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=Fals e, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, vid_stride=1, stream_buffer=False, visualize =False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, embed=None, show=False, save_frames=False, save_txt=False, save_conf=F alse, save_crop=False, show_labels=True, show_conf=True, show_boxes=True, line_width=None, format=torchscript, keras=False, optimize=False, int8=Fa lse, dynamic=False, simplify=True, opset=None, workspace=4, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, label_smoothing=0.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v =0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, bgr=0.0, mosaic=1.0, mixup=0.0, copy_paste=0.0, copy_paste_mode=flip, auto_augment=randaugment, erasing=0.4, crop_fraction=1.0, cfg=None, tracker=botsort.yaml, save_dir=runs\train\exp14 from n params module arguments 0 -1 1 6752 ultralytics.nn.modules.block.HGStem [3, 16, 32] 1 -1 2 15456 ultralytics.nn.modules.Light_HGNet.Light_HGBlock[32, 32, 64, 3, 2] 2 -1 1 704 ultralytics.nn.modules.conv.DWConv [64, 64, 3, 2, 1, False] 3 -1 2 44400 ultralytics.nn.modules.Light_HGNet.Light_HGBlock[64, 48, 128, 3, 2] 4 -1 1 1408 ultralytics.nn.modules.conv.DWConv [128, 128, 3, 2, 1, False] 5 -1 2 346080 ultralytics.nn.modules.Light_HGNet.Light_HGBlock[128, 96, 256, 5, 2] 6 -1 1 2816 ultralytics.nn.modules.conv.DWConv [256, 256, 3, 2, 1, False] 7 -1 2 1377216 ultralytics.nn.modules.Light_HGNet.Light_HGBlock[256, 192, 512, 5, 2] 8 -1 1 656896 ultralytics.nn.modules.block.SPPF [512, 512, 5] 9 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] 10 [-1, 5] 1 0 ultralytics.nn.modules.conv.Concat [1] 11 -1 1 849984 ultralytics.nn.modules.block.C3k2 [768, 384, 1] 12 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] 13 [-1, 3] 1 0 ultralytics.nn.modules.conv.Concat [1] 14 -1 1 237600 ultralytics.nn.modules.block.C3k2 [512, 192, 1] 15 -1 1 332160 ultralytics.nn.modules.conv.Conv [192, 192, 3, 2] 16 [-1, 11] 1 0 ultralytics.nn.modules.conv.Concat [1] 17 -1 1 776256 ultralytics.nn.modules.block.C3k2 [576, 384, 1] 18 -1 1 1327872 ultralytics.nn.modules.conv.Conv [384, 384, 3, 2] 19 [-1, 8] 1 0 ultralytics.nn.modules.conv.Concat [1] 20 -1 1 2904192 ultralytics.nn.modules.block.C3k2 [896, 768, 1] 21 [14, 17, 20] 1 1291801 ultralytics.nn.modules.head.Detect [3, [192, 384, 768]] YOLO11-HGNetV2_1 summary: 282 layers, 10,171,593 parameters, 10,171,577 gradients, 22.2 GFLOPs TensorBoard: Start with 'tensorboard --logdir runs\train\exp14', view at http://localhost:6006/ Freezing layer 'model.21.dfl.conv.weight' train: Scanning E:\YOLO\ultralytics-yolo11-main\dataset\labels\train.cache... 1720 images, 0 backgrounds, 0 corrupt: 100%|██████████| 1720/1720 [0 train: WARNING ⚠️ E:\YOLO\ultralytics-yolo11-main\dataset\images\train\cc_304.jpg: 2 duplicate labels removed train: WARNING ⚠️ E:\YOLO\ultralytics-yolo11-main\dataset\images\train\cc_325.jpg: 2 duplicate labels removed train: WARNING ⚠️ E:\YOLO\ultralytics-yolo11-main\dataset\images\train\cc_362.jpg: 1 duplicate labels removed val: Scanning E:\YOLO\ultralytics-yolo11-main\dataset\labels\text.cache... 176 images, 0 backgrounds, 0 corrupt: 100%|██████████| 176/176 [00:00<? Plotting labels to runs\train\exp14\labels.jpg... optimizer: SGD(lr=0.01, momentum=0.937) with parameter groups 70 weight(decay=0.0), 77 weight(decay=0.0005), 76 bias(decay=0.0) TensorBoard: model graph visualization added ✅ Image sizes 416 train, 416 val Using 0 dataloader workers Logging results to runs\train\exp14 Starting training for 2 epochs... Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 0%| | 0/215 [00:00<?, ?it/s] Traceback (most recent call last): File "train.py", line 32, in <module> model.train(data='dataset/data.yaml', File "E:\YOLO\ultralytics-yolo11-main\ultralytics\engine\model.py", line 802, in train self.trainer.train() File "E:\YOLO\ultralytics-yolo11-main\ultralytics\engine\trainer.py", line 208, in train self._do_train(world_size) File "E:\YOLO\ultralytics-yolo11-main\ultralytics\engine\trainer.py", line 390, in _do_train self.loss, self.loss_items = self.model(batch) File "C:\Users\JJCHAN\.conda\envs\yolov5_new\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl return forward_call(*args, **kwargs) File "E:\YOLO\ultralytics-yolo11-main\ultralytics\nn\tasks.py", line 167, in forward return self.loss(x, *args, **kwargs) File "E:\YOLO\ultralytics-yolo11-main\ultralytics\nn\tasks.py", line 387, in loss return self.criterion(preds, batch) File "E:\YOLO\ultralytics-yolo11-main\ultralytics\utils\loss.py", line 375, in __call__ loss, batch_size = self.compute_loss(preds, batch) File "E:\YOLO\ultralytics-yolo11-main\ultralytics\utils\loss.py", line 383, in compute_loss pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split( File "E:\YOLO\ultralytics-yolo11-main\ultralytics\utils\loss.py", line 383, in <listcomp> pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split( RuntimeError: shape '[8, 67, -1]' is invalid for input of size 1384448
最新发布
11-07
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小小的学徒

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值