PAT(甲级)1143. Lowest Common Ancestor(30)

本文介绍了一种解决二叉搜索树(BST)中两个节点最低公共祖先(LCA)问题的方法。通过前序遍历序列和利用BST的特性重构二叉树,实现了LCA的查找算法,并提供了完整的代码示例。

PAT 1143. Lowest Common Ancestor(30)
The lowest common ancestor (LCA) of two nodes U and V in a tree is the deepest node that has both U and V as descendants.
A binary search tree (BST) is recursively defined as a binary tree which has the following properties:
1.The left subtree of a node contains only nodes with keys less than the node’s key.
2.The right subtree of a node contains only nodes with keys greater than or equal to the node’s key.
3.Both the left and right subtrees must also be binary search trees.
Given any two nodes in a BST, you are supposed to find their LCA.


输入格式:
Each input file contains one test case. For each case, the first line gives two positive integers: M (≤ 1,000), the number of pairs of nodes to be tested; and N (≤ 10,000), the number of keys in the BST, respectively. In the second line, N distinct integers are given as the preorder traversal sequence of the BST. Then M lines follow, each contains a pair of integer keys U and V. All the keys are in the range of int.

输出格式:
For each given pair of U and V, print in a line LCA of U and V is A. if the LCA is found and A is the key. But if A is one of U and V, print X is an ancestor of Y. where X is A and Y is the other node. If U or V is not found in the BST, print in a line ERROR: U is not found.or ERROR: V is not found. or ERROR: U and V are not found..

输入样例:

6 8
6 3 1 2 5 4 8 7
2 5
8 7
1 9
12 -3
0 8
99 99

输出样例:

LCA of 2 and 5 is 3.
8 is an ancestor of 7.
ERROR: 9 is not found.
ERROR: 12 and -3 are not found.
ERROR: 0 is not found.
ERROR: 99 and 99 are not found.

题目分析:题目给出的是BST树,可以利用BST的中序遍历是顺序序列这一性质。由前序序列排序后获得中序序列,使用中序序列和前序序列重构二叉树即可。

AC代码:

#include <iostream>
#include <algorithm>
#include <map>
using namespace std;

const int maxn = 10010;
map<int, bool> mp;
int in[maxn];
int pre[maxn];
int post[maxn];
int preTemp[maxn];


struct node{
    int data;
    node* lchild;
    node* rchild;
};


node* build(int preL, int preR, int inL, int inR){
    if(preL>preR)return NULL;
    node* root = new node;
    root->data = pre[preL];
    int k;
    for(k=inL; k<=inR; ++k){
        if(in[k] == pre[preL])break;
    }
    int leftnum = k-inL;
    root->lchild = build(preL+1, preL+leftnum, inL, k-1);
    root->rchild = build(preL+leftnum+1, preR, k+1, inR);
    return root;
}

void postorder(node* root){
    if(root){
        postorder(root->lchild);
        postorder(root->rchild);
        cout<<root->data<<" ";
    }
}


node* lca(node* root, int u, int v){
    if(root==NULL)return NULL;
    if(root->data==u || root->data==v)return root;

    node* left = lca(root->lchild, u, v);
    node* right = lca(root->rchild, u, v);
    if(left && right)return root;
    return left==NULL?right:left;
}

int main(){
    int m, n, u, v;
    scanf("%d%d",&m,&n);
    for(int i=0; i<n; ++i){
        scanf("%d", &pre[i]);
        mp[pre[i]] = true;
        preTemp[i] = pre[i];
    }
    sort(preTemp,preTemp+n);
    for(int i=0; i<n; ++i){in[i]=preTemp[i];}
    node* root = build(0, n-1, 0, n-1);
    for(int i=0; i<m; ++i){
        scanf("%d%d",&u,&v);
        if(mp[u]==false && mp[v]==false)
            printf("ERROR: %d and %d are not found.\n", u, v);
        else if(mp[u]==false || mp[v]==false){
            if(mp[u]==false)
                printf("ERROR: %d is not found.\n",u);
            else
                printf("ERROR: %d is not found.\n",v);
        }
        else{
            node* tmp = lca(root, u, v);
            if(tmp->data==u || tmp->data==v){
                if(tmp->data == u)
                    printf("%d is an ancestor of %d.\n", u, v);
                else
                    printf("%d is an ancestor of %d.\n", v, u);
            }
            else{
                printf("LCA of %d and %d is %d.\n", u, v, tmp->data);
            }
        }
    }
    return 0;
}
以下是C#中二叉树的lowest common ancestor的源代码: ```csharp using System; public class Node { public int value; public Node left; public Node right; public Node(int value) { this.value = value; this.left = null; this.right = null; } } public class BinaryTree { public Node root; public BinaryTree() { this.root = null; } public Node LowestCommonAncestor(Node node, int value1, int value2) { if (node == null) { return null; } if (node.value == value1 || node.value == value2) { return node; } Node left = LowestCommonAncestor(node.left, value1, value2); Node right = LowestCommonAncestor(node.right, value1, value2); if (left != null && right != null) { return node; } return (left != null) ? left : right; } } public class Program { public static void Main() { BinaryTree tree = new BinaryTree(); tree.root = new Node(1); tree.root.left = new Node(2); tree.root.right = new Node(3); tree.root.left.left = new Node(4); tree.root.left.right = new Node(5); tree.root.right.left = new Node(6); tree.root.right.right = new Node(7); Node lca = tree.LowestCommonAncestor(tree.root, 4, 5); Console.WriteLine("Lowest Common Ancestor of 4 and 5: " + lca.value); lca = tree.LowestCommonAncestor(tree.root, 4, 6); Console.WriteLine("Lowest Common Ancestor of 4 and 6: " + lca.value); lca = tree.LowestCommonAncestor(tree.root, 3, 4); Console.WriteLine("Lowest Common Ancestor of 3 and 4: " + lca.value); lca = tree.LowestCommonAncestor(tree.root, 2, 4); Console.WriteLine("Lowest Common Ancestor of 2 and 4: " + lca.value); } } ``` 在上面的代码中,我们定义了一个Node类和一个BinaryTree类。我们使用BinaryTree类来创建二叉树,并实现了一个LowestCommonAncestor方法来计算二叉树中给定两个节点的最近公共祖先。 在LowestCommonAncestor方法中,我们首先检查给定节点是否为null或与给定值之一匹配。如果是,则返回该节点。否则,我们递归地在左子树和右子树上调用LowestCommonAncestor方法,并检查它们的返回值。如果左子树和右子树的返回值都不为null,则当前节点是它们的最近公共祖先。否则,我们返回非null的那个子树的返回值。 在Main方法中,我们创建了一个二叉树,并测试了LowestCommonAncestor方法的几个不同输入。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值