1036.数字跳跃

问题描述
小明最近迷上了一种数字游戏,指定给出一组正整数,游戏规则是从第一个数向最后一个数进行跳跃,
选出一条跳跃次数最短的路径(如果有多条,选出一条即可,并记录跳跃次数)。每次跳跃长度至少为1,每个数字的值
表示可以从当前位置可以跳跃的最大长度。

输入:
一组正整数数字。

输出:
从第一个数跳到最后一个数的跳跃次数及每次的落点数字。

样例输入:
3, 1, 4, 1, 1, 5, 2, 1, 1, 6

样例输出:
3
3, 4, 5, 6

实现代码:

#include <stdio.h>
#include <ctype.h>
#include <string.h>

#define ARRAYSIZE	100

int main()
{
	int array[ARRAYSIZE];
	int dropPointNum[ARRAYSIZE];
	char c;
	int size = 0;
	int jumpInterval;						/*跳跃间隔*/
	int max;
	int index = 0;
	int nodeCount = 0;
	int interval = 0;
	int flag;								/*记录跳跃点的下标*/
	int pointPos = 0;
	int firstNum = 0;

	/*由于要读入一组个数未知的整数,我想把它们放在数组里。先读入一个数,然后在用getchar读取剩下所有*/
	while(scanf("%d", &firstNum) != EOF)
	{
		/*清空数组,避免下次循环的干扰*/
		memset(array, 0 , ARRAYSIZE);
		memset(dropPointNum, 0 , ARRAYSIZE);

		/*******************************/
		/*读取一组整数,并存入数组array*/
		/*******************************/

		/*第一个读进来的数也要放入数组里*/
		array[size++] = firstNum;
		
		while((c = getchar()) != '\n'){			/*没遇到换行符就一直读*/
			if(isdigit(c)){
				ungetc(c, stdin);				/*把c送回输入流*/
				scanf("%d", &array[size++]);
			}
		}

		/*开始判断跳跃次数和跳跃点*/
		jumpInterval = array[index];						/*初始的最大跳跃间隔就是第一个元素的值*/
		dropPointNum[pointPos++] = array[index];			/*第一个数就是第一个跳跃点*/
		size--;												/*数组下标的最大值*/
		
		while(interval	!= size){							/*还没跳到数组尾部*/
			if(jumpInterval >= (size - index)){				/*如果跳跃间隔大于剩下的元素个数,就可以结束了*/
				nodeCount++;
				dropPointNum[pointPos++] = array[size];		/*跳跃点就是array最后一个元素*/
				break;
			}else{
				max = array[index + 1];
				flag = index + 1;

				/*选择跳跃间隔内的最大值max*/
				for(interval = index + 2; interval <= index + jumpInterval; interval++){
					if(array[interval] > max){
						max = array[interval];
						flag = interval;					/*记录跳跃点的下标*/
					}
				}
				jumpInterval = max;							/*新的最大跳跃间隔*/
				nodeCount++;
				index += flag;

				dropPointNum[pointPos++] = max;				/*记录跳跃点*/
			}
		}	

		/*打印跳跃点数和跳跃点*/
		printf("%d\n", nodeCount);
		
		pointPos = 0;
		while(dropPointNum[pointPos] != 0){
			if(pointPos == nodeCount)
				printf("%d", dropPointNum[pointPos++]);
			else
				printf("%d, ", dropPointNum[pointPos++]);
		}
		printf("\n");
		
	}
	
	
	return 0;
}
1001A,1002A,1003A,1004A,1005A,1006A,1007A,1008A,1009A,1010A,1011A,1012A,1013A,1014A,1015A,1016A,1017A,1018A,1019A,1020A,1021A,1022A,1023A,1024A,1025A,1026A,1027A,1028A,1029A,1030A,1031A,1032A,1033A,1034A,1035A,1036A,1037A,1038A,1039A,1040A,1041A,1042A,1043A,1044A,1045A,1046A,1047A,1048A,1049A,1050A,1051A,1052A,1053A,1054A,1055A,1056A,1057A,1058A,1059A,1060A,1061A,1062A,1063A,1064A,1065A,1066A,1067A,1068A,1069A,1070A,1071A,1072A,1073A,1074A,1075A,1076A,1077A,1078A,1079A,1080A,1081A,1082A,1083A,1084A,1085A,1086A,1087A,1088A,1089A,1090A,1091A,1092A,1093A,1094A,1095A,1096A,1097A,1098A,1099A,1100A,1101A,1102A,1103A,1104A,1105A,1106A,1107A,1108A,1109A,1110A,1111A,1112A,1113A,1114A,1115A,1116A,1117A,1118A,1119A,1120A,1121A,1122A,1123A,1124A,1125A,1126A,1127A,1128A,1129A,1130A,1131A,1132A,1133A,1134A,1135A,1136A,1137A,1138A,1139A,1140A,1141A,1142A,1143A,1144A,1145A,1146A,1147A,1148A,1149A,1150A,1151A,1152A,1153A,1154A,1155A,1156A,1157A,1158A,1159A,1160A,1161A,1162A,1163A,1164A,1165A,1166A,1167A,1168A,1169A,1170A,1171A,1172A,1173A,1174A,1175A,1176A,1177A,1178A,1179A,1180A,1181A,1182A,1183A,1184A,1185A,1186A,1187A,1188A,1189A,1190A,1191A,1192A,1193A,1194A,1195A,1196A,1197A,1198A,1199A,1200A,1201A,1202A,1203A,1204A,1205A,1206A,1207A,1208A,1209A,1210A,1211A,1212A,1213A,1214A,1215A,1216A,1217A,1218A,1219A,1220A,1221A,1222A,1223A,1224A,1225A,1226A,1227A,1228A,1229A,1230A,1231A,1232A,1233A,1453A,1454A,1455A,1456A,1457A,1458A,1459A,1460A,1461A,1462A,1463A,1464A,1465A,1466A,1467A,1468A,1469A,1470A,1471A,1472A,1473A,1474A,1475A,1476A,1477A,1478A,1479A,1480A,1481A,1482A,1483A,1484A,1485A,1486A,1487A,1488A,1489A,1490A,1491A,1492A,1493A,1494A,1495A,1496A,1497A,1498A,1499A,1500A,1501A,1502A,1503A,1504A,1505A,1506A,1507A,1508A,1509A,1510A,1511A,1512A,1513A,1514A,1515A,1516A,1517A,1518A,1519A,1520A,1521A,1522A,1523A,1524A,1525A,1526A,1527A,1528A,1529A,1530A,1531A,1532A,1533A,1534A,1535A,1536A,1537A,1538A,1539A,1540A,1541A,1542A,1543A,1691A,1692A,1693A,1694A,1695A,1696A,1697A,1698A,1699A,1700A,1701A,1702A,1703A,1704A,1705A,1706A,1707A,1708A,1709A,1710A,1711A,1712A,1714A,1715A,1716A,1717A,1718A,1719A,1720A,1721A,1722A,1723A,1724A,1725A,1726A,1727A,1728A,1729A,1730A,1731A,1732A,1733A,1734A,1735A,1736A,1737A,1738A,1739A,1740A,1741A,1742A,1743A,1744A,1745A,1746A,1747A,1748A,1749A,1750A,1751A,1752A,1753A,1754A,1755A,1756A,1757A,1758A,1759A,1760A,1761A,1762A,1763A,1764A,1765A,1766A,1767A,1768A,1769A,1770A,1771A,1772A,1773A,1774A,1775A,1776A,1777A,1778A,1629A,1630A,1631A,1632A,1633A,1634A,1635A,1636A,1637A,1638A,1639A,1640A,1641A,1642A,1643A,1644A,1645A,1646A,1647A,1648A,1649A,1650A,1651A,1652A,1653A,1654A,1655A,1656A,1657A,1658A,1659A,1660A,1661A,1662A,1663A,1664A,1665A,1666A,1667A,1668A,1669A,1670A,1671A,1672A,1673A,1674A,1675A,1676A,1677A,1678A,1679A,1680A,1681A,1682A,1683A,1684A,1685A,1686A,1687A,1688A,1689A,1690A,1544A,1545A,1546A,1547A,1548A,1549A,1550A,1551A,1552A,1553A,1554A,1555A,1556A,1557A,1558A,1559A,1560A,1561A,1562A,1563A,1564A,1565A,1566A,1567A,1568A,1569A,1570A,1571A,1572A,1573A,1574A,1575A,1576A,1577A,1578A,1579A,1580A,1581A,1582A,1583A,1584A,1585A,1586A,1587A,1588A,1589A,1590A,1591A,1592A,1593A,1594A,1595A,1596A,1597A,1598A,1599A,1600A,1601A,1602A,1603A,1604A,1605A,1606A,1607A,1608A,1609A,1610A,1611A,1612A,1613A,1614A,1615A,1616A,1617A,1618A,1619A,1620A,1621A,1622A,1623A,1624A,1625A,1626A,1627A,1628A,1997A,1998A,1999A,2000A,2001A,2002A,2003A,2004A,2005A,2006A,2007A,2008A,2009A,2010A,2011A,2012A,2013A,2014A,2015A,2016A,2017A,2018A,2019A,2020A,2021A,2022A,2023A,2024A,2025A,2026A,2027A,2028A,2029A,2030A,2031A,2032A,2033A,2034A,2035A,2036A,2037A,2038A,2039A,2040A,2041A,2042A,2043A,2044A,2045A,2046A,2047A,2048A,2049A,2050A,2051A
最新发布
11-01
### 跳跃索引的概念及其在数据结构中的应用 跳跃索引通常指的是 **跳跃表(Skip List)** 中的一种实现机制。跳跃表是一种基于概率的数据结构,用于高效存储和检索有序集合中的元素[^4]。它通过构建多层链表的方式,在高层快速跳过大量无关节点,从而减少不必要的比较操作。 #### 跳跃表的核心特性 跳跃表的主要特点是其分层设计。每一层都表示一个稀疏化的子集,顶层包含最少的节点,而底层则包含了所有的节点。这种多层次的设计使得跳跃表能够在平均情况下达到 \(O(\log n)\) 的时间复杂度完成插入、删除以及查找操作。 以下是跳跃表的关键组成部分: - **多级指针**: 每个节点可能指向同一层的下一个节点,也可能指向更高层的某个节点。 - **随机化高度**: 新增节点的高度由随机函数决定,这有助于保持各层之间的平衡分布。 #### 实现细节 下面是一个简单的 Python 版本的跳跃表实现: ```python import random class Node: def __init__(self, value, level): self.value = value self.forward = [None] * (level + 1) class SkipList: def __init__(self, max_level=16, p=0.5): self.max_level = max_level self.p = p self.header = Node(None, max_level) self.level = 0 def _random_level(self): lvl = 0 while random.random() < self.p and lvl < self.max_level: lvl += 1 return lvl def insert(self, value): update = [None] * (self.max_level + 1) current = self.header for i in range(self.level, -1, -1): while current.forward[i] and current.forward[i].value < value: current = current.forward[i] update[i] = current current = current.forward[0] if not current or current.value != value: new_level = self._random_level() if new_level > self.level: for i in range(self.level + 1, new_level + 1): update[i] = self.header self.level = new_level node = Node(value, new_level) for i in range(new_level + 1): node.forward[i] = update[i].forward[i] update[i].forward[i] = node def search(self, value): current = self.header for i in range(self.level, -1, -1): while current.forward[i] and current.forward[i].value < value: current = current.forward[i] current = current.forward[0] if current and current.value == value: return True return False ``` 上述代码定义了一个基本的跳跃列表类 `SkipList` 及其实现方法。其中 `_random_level()` 函数决定了新节点应该被放置在哪几层中,这是跳跃表性能优化的重要部分之一。 --- ### 排序算法与跳跃表的关系 虽然跳跃表本身不是一种排序算法,但它可以通过某种方式辅助其他排序算法的工作流程。例如,在某些场景下,我们可以利用跳跃表替代传统的二叉搜索树或者红黑树作为动态集合的基础容器[^3]。这样做的好处在于简化了维护平衡的操作,并且仍然能够提供接近最优的时间复杂度。 另外需要注意的是,像计数排序这样的线性时间排序方案适用于特定条件下的输入序列处理[^2];然而当面对更加复杂的键值范围时,则需考虑采用支持重复插入/查询功能更强的数据结构——比如这里提到的跳跃表。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值