数据结构中常用的操作的效率表

本文总结了经典数据结构如数组、链表、二叉树等及算法如排序算法的效率,并通过表格形式展示了不同数据结构操作的时间复杂度以及常见排序算法的平均、最好和最坏情况下的时间复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前面介绍了经典的数据结构和算法,这一节我们对这些数据结构和算法做一个总结,具体细节,请参见各个章节的详细介绍,这里我们用表格来呈现它们的效率。

1. 数据结构部分

数据结构中常用的操作的效率表

通用数据结构

查找 

插入 

 删除

遍历 

数组

O(N)

O(N)

O(N)

有序数组

O(logN)

O(N)

O(N)

O(N)

链表

O(N)

O(1)

O(N)

有序链表

O(N)

O(N)

O(N)

O(N)

二叉树

O(logN)

O(logN)

O(logN)

O(N)

二叉树(最坏)

O(N)

O(N)

O(N)

O(N)

红黑树

O(logN)

O(logN)

O(logN)

O(N)

2-3-4树

O(logN)

O(logN)

O(logN)

O(N)

哈希表

O(1)

O(1)

O(1)

专用数据结构

 

 

 

 

O(1)

O(1)

队列

O(1)

O(1)

优先级队列

O(N)

O(1)

优先级队列(堆)

O(logN)

O(logN)

 


2. 排序算法

常见的排序算法比较表

排序

平均情况

最好情况

最坏情况

稳定与否

空间复杂度

冒泡排序

O(N2)

O(N)

O(N2)

稳定

1

选择排序

O(N2)

O(N2)

O(N2)

不稳定

1

插入排序

O(N2)

O(N)

O(N2)

稳定

1

希尔排序

O(NlogN)

(依赖于增量序列)

不稳定

1

快速排序

O(NlogN)

O(NlogN)

O(N2)

不稳定

O(logN)

归并排序

O(NlogN)

O(NlogN)

O(NlogN)

稳定

O(N)

二叉树排序

O(NlogN)

O(NlogN)

O(N2)

稳定

O(N)

堆排序

O(NlogN)

O(NlogN)

O(NlogN)

不稳定

1

拓扑排序

O(N+E)

O(N)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值