Word2Vec 相关

  1. 找Word2Vec的工具,实现看效果
    • Word2Vec(Google):
      • Capture many linguistic regularities
        For example vector operations vector(‘Paris’) - vector(‘France’) + vector(‘Italy’) results in a vector that is very close to vector(‘Rome’)
      • From words to phrases and beyond
        Example vector for representing ‘san francisco’
      • Word Consine distance
      • Word clustering
        Deriving word classes from huge data sets. This is achieved by performing K-means clustering on top of the word vectors. The output is a vocabulary file with words and their corresponding class IDs
    • Performance
      • Architecture:
        • Skip-Gram: slower, better for infrequent words
        • CBOW: fast
      • The training algorithm:
        • hierarchical softmax: better for infrequent words
        • negative sampling: better for frequent words, better with low dimensional vectors
      • Sub-sampling of frequent words: can improve both accuracy and speed for large data sets (useful values are in range 1e-3 to 1e-5)
      • Dimensionality of the word vectors: usually more is better, but not always
      • Context(window) size:
        • skip-gram: around 10
        • CBOW: around 5
    • 获取训练数据(黑体的训练数据在参考网站都有网址)
      • First billion characters from wikipedia (use the pre-processing perl script from the bottom of Matt Mahoney’s page)
      • Latest Wikipedia dump Use the same script as above to obtain clean text. Should be more than 3 billion words.
      • WMT11 site: text data for several languages (duplicate sentences should be removed before training the models)
      • Dataset from "One Billion Word Language Modeling Benchmark" Almost 1B words, already pre-processed text.
      • UMBC webbase corpus Around 3 billion words, more info here. Needs further processing (mainly tokenization).
      • Text data from more languages can be obtained at statmt.org and in the Polyglot project(亲测好评).
    • 总之Google的word2vec网站有很多可探索的东西
    • 影响词向量质量的因素
      • 训练数据的数量和质量
      • 词向量的大小
      • 训练算法
【无人机】基于改进粒子群算法的无人机路径规划研究[和遗传算法、粒子群算法进行比较](Matlab代码实现)内容概要:本文围绕基于改进粒子群算法的无人机路径规划展开研究,重点探讨了在复杂环境中利用改进粒子群算法(PSO)实现无人机三维路径规划的方法,并将其与遗传算法(GA)、标准粒子群算法等传统优化算法进行对比分析。研究内容涵盖路径规划的多目标优化、避障策略、航路点约束以及算法收敛性和寻优能力的评估,所有实验均通过Matlab代码实现,提供了完整的仿真验证流程。文章还提到了多种智能优化算法在无人机路径规划中的应用比较,突出了改进PSO在收敛速度和全局寻优方面的优势。; 适合人群:具备一定Matlab编程基础和优化算法知识的研究生、科研人员及从事无人机路径规划、智能优化算法研究的相关技术人员。; 使用场景及目标:①用于无人机在复杂地形或动态环境下的三维路径规划仿真研究;②比较不同智能优化算法(如PSO、GA、蚁群算法、RRT等)在路径规划中的性能差异;③为多目标优化问题提供算法选型和改进思路。; 阅读建议:建议读者结合文中提供的Matlab代码进行实践操作,重点关注算法的参数设置、适应度函数设计及路径约束处理方式,同时可参考文中提到的多种算法对比思路,拓展到其他智能优化算法的研究与改进中。
### word2vec 相关研究论文 word2vec 是一种用于生成词向量的技术,由 Google 提出并广泛应用于自然语言处理领域。其核心思想是通过神经网络模型来捕捉词语之间的关系,并将其映射到低维连续空间中[^1]。以下是几篇与 word2vec 密切相关的学术论文及其贡献: #### 1. **Original Word2Vec Paper** - 论文名称:*Distributed Representations of Words and Phrases and their Compositionality* - 这篇文章介绍了 skip-gram 和 CBOW(Continuous Bag-of-Words)两种模型的核心算法以及负采样方法。它展示了如何有效地训练大规模数据集上的词向量,并讨论了这些向量在语义相似性和句法分析中的表现[^3]。 #### 2. **Skip-Gram Negative Sampling Information Theory Perspective** - 文章探讨了 skip-gram 负采样目标函数的信息论解释。该工作揭示了为什么负采样的优化过程能够有效捕获单词间的共现统计特性。 #### 3. **Extensions to Word Embeddings** - *GloVe: Global Vectors for Word Representation*: GloVe 方法结合了矩阵分解技术和 co-occurrence 统计信息,提供了一种不同于 word2vec 的词嵌入方式。尽管不是直接扩展 word2vec,但它提供了另一种视角来看待词向量的学习问题。 #### 4. **Applications Beyond Text Data** - 在某些情况下,word2vec 的思想也被推广到了其他类型的结构化数据上。例如,在推荐系统中使用 item2vec 或者 node2vec 来建模物品间的关系或者图节点的特征[^2]。 ```python import gensim from gensim.models import Word2Vec # Example code snippet showing how to train a simple Word2Vec model. sentences = [["cat", "say", "meow"], ["dog", "bark"]] model = Word2Vec(sentences, min_count=1) print(model.wv["cat"]) ``` 上述代码片段展示了一个简单的 word2vec 模型训练流程,利用 Gensim 库可以快速实现基于文本数据的词向量计算。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值