1.概述
信用卡盗刷一般发生在持卡人信息被不法分子窃取后,复制卡片进行消费或信用卡被他人冒领后激活并消费等情况下。一旦发生信用卡盗刷,持卡人和银行都会遭受一定的经济损失。本节要运用支持向量机分类算法搭建一个金融反欺诈模型。
2.数据集
使用的数据集共有1000条客户信用卡的交易数据。其中,有400个欺诈样本,600个非欺诈样本。数据集中变量的详细描述如下表所示,表格中的“欺诈标签”列为目标变量,若是盗刷信用卡产生的交易则标记为1,代表欺诈,正常交易则标记为0。剩下的字段为特征变量,只选取了5个特征变量,在实际中使用的特征变量远很多,根据这些数据搭建支持向量机模型。

3、分析过程
(1)数据读取
首先通过pandas库读取数据,代码如下:
import pandas as pd
df = pd.read_excel('信用卡交易数据.xlsx')
df.head()
通过打印df.head()查看表格的前5行,结果如下所示:

其中第1列“欺诈标签”为目标变量y,其余5列为特征变量X,接下来我们将利用这些数据搭建金融反诈识别模型。
(2)提取特征变量和目标变量
首先将特征变量和目标变量分别提取出来,代码如下:

最低0.47元/天 解锁文章
1346

被折叠的 条评论
为什么被折叠?



