Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BST.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes p and q as the lowest node in T that has both p and q as descendants (where we allow a node to be a descendant of itself).”
Given binary search tree: root = [6,2,8,0,4,7,9,null,null,3,5]
_______6______ / \ ___2__ ___8__ / \ / \ 0 _4 7 9 / \ 3 5
Example 1:
Input: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 8
Output: 6
Explanation: The LCA of nodes 2 and 8 is 6.
Example 2:
Input: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 4
Output: 2
Explanation: The LCA of nodes 2 and 4 is 2, since a node can be a descendant of itself according to the LCA definition.
Note:
- All of the nodes' values will be unique.
- p and q are different and both values will exist in the BST.
思路:一般二叉树的题用递归很好做。这个题首先是Binary Search Tree,就是说左子树所有的值都小于根节点的值,右子树的值都大于根节点的值。所以找共同父节点时,只需要从上向下,找第一个值处于这两个子节点值之间就可以。
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def lowestCommonAncestor(self, root, p, q):
"""
:type root: TreeNode
:type p: TreeNode
:type q: TreeNode
:rtype: TreeNode
"""
if root.val>max(p.val, q.val):
return self.lowestCommonAncestor(root.left, p, q)
elif root.val<min(p.val, q.val):
return self.lowestCommonAncestor(root.right, p, q)
return root