好文转载 机器学习强基计划8-5:图解局部线性嵌入LLE算法(附Python实现)

在这里插入图片描述

0 写在前面

机器学习强基计划聚焦深度和广度,加深对机器学习模型的理解与应用。“深”在详细推导算法模型背后的数学原理;“广”在分析多个机器学习模型:决策树、支持向量机、贝叶斯与马尔科夫决策、强化学习等。强基计划实现从理论到实践的全面覆盖,由本人亲自从底层编写、测试与文章配套的各个经典算法,不依赖于现有库,可以大大加深对算法的理解。

🚀详情:机器学习强基计划(附几十种经典模型源码)


1 流形学习

机器学习强基计划8-4:流形学习等度量映射Isomap算法(附Python实现)中,我们介绍了流形(manifolds)的概念,它是可以局部欧几里得空间化的一个拓扑空间,是具有拓扑结构的点集,是欧几里得空间中的曲线、曲面等概念的推广。对流形的物理意义不熟悉的同学可以回顾上一篇文章。

在这里插入图片描述

流形学习(manifold learning)是基于流形的机器学习算法,它假设样本数据分布在高维特征空间中的低维嵌入流形上,虽然整体十分复杂,但局部上仍具有欧氏空间的性质,因此可以在局部建立降维映射关系,然后再将局部映射关系推广到全局——局部线性构造全局非线性。流形学习旨在从观测样本中去寻找产生数据分布的内在本质规律,而非破坏结构性地降维。

2 局部线性嵌入算法

2.1 什么是局部线性嵌入?

局部线性嵌入(Locally Linear Embedding, LLE)限制样本在降维后的低维空间中的

     k 
    
   
  
    k 
   
  
</span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.6944em;"></span><span class="mord mathnormal" style="margin-right: 0.0315em;">k</span></span></span></span></span>近邻局部线性关系,等价于原始空间。</p> 

例如,若高维样本满足

      x 
     
    
      i 
     
    
   
     = 
    
    
    
      w 
     
     
     
       i 
      
     
       j 
      
     
    
    
    
      x 
     
    
      j 
     
    
   
     + 
    
    
    
      w 
     
     
     
       i 
      
     
       k 
      
     
    
    
    
      x 
     
    
      k 
     
    
   
     + 
    
    
    
      w 
     
     
     
       i 
      
     
       l 
      
     
    
    
    
      x 
     
    
      l 
     
    
   
  
    \boldsymbol{x}_i=w_{ij}\boldsymbol{x}_j+w_{ik}\boldsymbol{x}_k+w_{il}\boldsymbol{x}_l 
   
  
</span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.5944em; vertical-align: -0.15em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3117em;"><span class="" style="top: -2.55em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: 0.2778em;"></span></span><span class="base"><span class="strut" style="height: 0.8694em; vertical-align: -0.2861em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right: 0.0269em;">w</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3117em;"><span class="" style="top: -2.55em; margin-left: -0.0269em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right: 0.0572em;">ij</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.2861em;"><span class=""></span></span></span></span></span></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3117em;"><span class="" style="top: -2.55em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right: 0.0572em;">j</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.2861em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right: 0.2222em;"></span></span><span class="base"><span class="strut" style="height: 0.7333em; vertical-align: -0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right: 0.0269em;">w</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3361em;"><span class="" style="top: -2.55em; margin-left: -0.0269em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right: 0.0315em;">ik</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3361em;"><span class="" style="top: -2.55em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right: 0.0315em;">k</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right: 0.2222em;"></span></span><span class="base"><span class="strut" style="height: 0.5944em; vertical-align: -0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right: 0.0269em;">w</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3361em;"><span class="" style="top: -2.55em; margin-left: -0.0269em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span><span class="mord mathnormal mtight" style="margin-right: 0.0197em;">l</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3361em;"><span class="" style="top: -2.55em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right: 0.0197em;">l</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span></span></span></span></span>,则低维样本同样满足<span class="katex--inline"><span class="katex"><span class="katex-mathml"> 
 
  
   
    
    
      z 
     
    
      i 
     
    
   
     = 
    
    
    
      w 
     
     
     
       i 
      
     
       j 
      
     
    
    
    
      z 
     
    
      j 
     
    
   
     + 
    
    
    
      w 
     
     
     
       i 
      
     
       k 
      
     
    
    
    
      z 
     
    
      k 
     
    
   
     + 
    
    
    
      w 
     
     
     
       i 
      
     
       l 
      
     
    
    
    
      z 
     
    
      l 
     
    
   
  
    \boldsymbol{z}_i=w_{ij}\boldsymbol{z}_j+w_{ik}\boldsymbol{z}_k+w_{il}\boldsymbol{z}_l 
   
  
</span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.5944em; vertical-align: -0.15em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right: 0.0421em;">z</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3117em;"><span class="" style="top: -2.55em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: 0.2778em;"></span></span><span class="base"><span class="strut" style="height: 0.8694em; vertical-align: -0.2861em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right: 0.0269em;">w</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3117em;"><span class="" style="top: -2.55em; margin-left: -0.0269em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right: 0.0572em;">ij</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.2861em;"><span class=""></span></span></span></span></span></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right: 0.0421em;">z</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3117em;"><span class="" style="top: -2.55em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right: 0.0572em;">j</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.2861em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right: 0.2222em;"></span></span><span class="base"><span class="strut" style="height: 0.7333em; vertical-align: -0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right: 0.0269em;">w</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3361em;"><span class="" style="top: -2.55em; margin-left: -0.0269em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right: 0.0315em;">ik</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right: 0.0421em;">z</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3361em;"><span class="" style="top: -2.55em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right: 0.0315em;">k</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right: 0.2222em;"></span></span><span class="base"><span class="strut" style="height: 0.5944em; vertical-align: -0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right: 0.0269em;">w</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3361em;"><span class="" style="top: -2.55em; margin-left: -0.0269em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span><span class="mord mathnormal mtight" style="margin-right: 0.0197em;">l</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right: 0.0421em;">z</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3361em;"><span class="" style="top: -2.55em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right: 0.0197em;">l</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span></span></span></span></span>,如图所示,其中<span class="katex--inline"><span class="katex"><span class="katex-mathml"> 
 
  
   
    
    
      w 
     
    
      i 
     
    
   
  
    \boldsymbol{w}_i 
   
  
</span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.5944em; vertical-align: -0.15em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right: 0.0278em;">w</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3117em;"><span class="" style="top: -2.55em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span></span></span></span></span>称为样本<span class="katex--inline"><span class="katex"><span class="katex-mathml"> 
 
  
   
    
    
      x 
     
    
      i 
     
    
   
  
    \boldsymbol{x}_i 
   
  
</span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.5944em; vertical-align: -0.15em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3117em;"><span class="" style="top: -2.55em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span></span></span></span></span>的<font color="#4a86e8"><strong>重构系数</strong></font>。</p> 

在这里插入图片描述

2.2 算法原理推导

设高维样本

      x 
     
    
      i 
     
    
   
  
    \boldsymbol{x}_i 
   
  
</span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.5944em; vertical-align: -0.15em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3117em;"><span class="" style="top: -2.55em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span></span></span></span></span>的<span class="katex--inline"><span class="katex"><span class="katex-mathml"> 
 
  
   
   
     k 
    
   
  
    k 
   
  
</span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.6944em;"></span><span class="mord mathnormal" style="margin-right: 0.0315em;">k</span></span></span></span></span>近邻样本集合为<span class="katex--inline"><span class="katex"><span class="katex-mathml"> 
 
  
   
    
    
      Q 
     
    
      i 
     
    
      k 
     
    
   
  
    Q_{i}^{k} 
   
  
</span><span class="katex-html"><span class="base"><span class="strut" style="height: 1.1078em; vertical-align: -0.2587em;"></span><span class="mord"><span class="mord mathnormal">Q</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.8491em;"><span class="" style="top: -2.4413em; margin-left: 0em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="" style="top: -3.063em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right: 0.0315em;">k</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.2587em;"><span class=""></span></span></span></span></span></span></span></span></span></span>,则重构系数应满足</p> 

         min 
        
       
         ⁡ 
        
       
       
        
        
          w 
         
        
          1 
         
        
       
         , 
        
        
        
          w 
         
        
          2 
         
        
       
         , 
        
       
         ⋯ 
         
       
         , 
        
        
        
          w 
         
        
          m 
         
        
       
      
     
     
     
       ∑ 
      
      
      
        i 
       
      
        = 
       
      
        1 
       
      
     
       m 
      
     
     
      
      
        ∥ 
       
       
       
         x 
        
       
         i 
        
       
      
        − 
       
       
       
         ∑ 
        
        
        
          j 
         
        
          ∈ 
         
         
         
           Q 
          
         
           i 
          
         
           k 
          
         
        
       
       
        
        
          w 
         
         
         
           i 
          
         
           j 
          
         
        
        
        
          x 
         
        
          j 
         
        
       
      
        ∥ 
       
      
     
       2 
      
     
       2 
      
       
    
      s 
     
    
      . 
     
    
      t 
     
    
      . 
     
     
     
       ∑ 
      
      
      
        j 
       
      
        ∈ 
       
       
       
         Q 
        
       
         i 
        
       
         k 
        
       
      
     
     
     
       w 
      
      
      
        i 
       
      
        j 
       
      
     
    
      = 
     
    
      1 
     
     
     
       ( 
      
     
       i 
      
     
       = 
      
     
       1 
      
     
       , 
      
     
       2 
      
     
       , 
      
     
       ⋯ 
       
     
       , 
      
     
       m 
      
     
       ) 
      
     
    
   
     \underset{\boldsymbol{w}_1,\boldsymbol{w}_2,\cdots ,\boldsymbol{w}_m}{\min}\sum_{i=1}^m{\left\| \boldsymbol{x}_i-\sum_{j\in Q_{i}^{k}}{w_{ij}\boldsymbol{x}_j} \right\| _{2}^{2}}\,\, \mathrm{s}.\mathrm{t}. \sum_{j\in Q_{i}^{k}}{w_{ij}}=1\left( i=1,2,\cdots ,m \right) 
    
   
 </span><span class="katex-html"><span class="base"><span class="strut" style="height: 3.9339em; vertical-align: -1.6799em;"></span><span class="mord"><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.6679em;"><span class="" style="top: -2.4em; margin-left: 0em;"><span class="pstrut" style="height: 3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord boldsymbol mtight" style="margin-right: 0.0278em;">w</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3173em;"><span class="" style="top: -2.357em; margin-right: 0.0714em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.143em;"><span class=""></span></span></span></span></span></span><span class="mpunct mtight">,</span><span class="mord mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord boldsymbol mtight" style="margin-right: 0.0278em;">w</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3173em;"><span class="" style="top: -2.357em; margin-right: 0.0714em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.143em;"><span class=""></span></span></span></span></span></span><span class="mpunct mtight">,</span><span class="minner mtight">⋯</span><span class="mspace mtight" style="margin-right: 0.1952em;"></span><span class="mpunct mtight">,</span><span class="mord mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord boldsymbol mtight" style="margin-right: 0.0278em;">w</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.1645em;"><span class="" style="top: -2.357em; margin-right: 0.0714em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathnormal mtight">m</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.143em;"><span class=""></span></span></span></span></span></span></span></span></span><span class="" style="top: -3em;"><span class="pstrut" style="height: 3em;"></span><span class=""><span class="mop"><span class="mop">min</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.8361em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 1.6514em;"><span class="" style="top: -1.8723em; margin-left: 0em;"><span class="pstrut" style="height: 3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span class="" style="top: -3.05em;"><span class="pstrut" style="height: 3.05em;"></span><span class=""><span class="mop op-symbol large-op">∑</span></span></span><span class="" style="top: -4.3em; margin-left: 0em;"><span class="pstrut" style="height: 3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">m</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 1.2777em;"><span class=""></span></span></span></span></span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="mord"><span class="minner"><span class="minner"><span class="mopen"><span class="delimsizing mult"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 2.05em;"><span class="" style="top: -4.05em;"><span class="pstrut" style="height: 5.6em;"></span><span class="" style="width: 0.556em; height: 3.6em;"> 
            <svg width="0.556em" height="3.600em" viewBox="0 0 556 3600"> 
             <path d="M145 15 v585 v2400 v585 c2.667,10,9.667,15,21,15

c10,0,16.667,-5,20,-15 v-585 v-2400 v-585 c-2.667,-10,-9.667,-15,-21,-15
c-10,0,-16.667,5,-20,15z M188 15 H145 v585 v2400 v585 h43z
M367 15 v585 v2400 v585 c2.667,10,9.667,15,21,15
c10,0,16.667,-5,20,-15 v-585 v-2400 v-585 c-2.667,-10,-9.667,-15,-21,-15
c-10,0,-16.667,5,-20,15z M410 15 H367 v585 v2400 v585 h43z">
xijQikwijxj


22s.t.jQikwij=1(i=1,2,,m)

为便于优化,将其改写为矩阵形式

         min 
        
       
         ⁡ 
        
       
       
        
        
          w 
         
        
          1 
         
        
       
         , 
        
        
        
          w 
         
        
          2 
         
        
       
         , 
        
       
         ⋯ 
         
       
         , 
        
        
        
          w 
         
        
          m 
         
        
       
      
     
     
     
       ∑ 
      
      
      
        i 
       
      
        = 
       
      
        1 
       
      
     
       m 
      
     
     
      
      
        w 
       
      
        i 
       
      
        T 
       
      
      
       
        
        
          X 
         
        
          ~ 
         
        
       
      
        i 
       
      
        T 
       
      
      
       
        
        
          X 
         
        
          ~ 
         
        
       
      
        i 
       
      
      
      
        w 
       
      
        i 
       
      
       
    
      s 
     
    
      . 
     
    
      t 
     
    
      . 
     
     
     
       w 
      
     
       i 
      
     
       T 
      
     
     
     
       1 
      
      
      
        k 
       
      
        × 
       
      
        1 
       
      
     
    
      = 
     
    
      1 
     
     
     
       ( 
      
     
       i 
      
     
       = 
      
     
       1 
      
     
       , 
      
     
       2 
      
     
       , 
      
     
       ⋯ 
       
     
       , 
      
     
       m 
      
     
       ) 
      
     
    
   
     \underset{\boldsymbol{w}_1,\boldsymbol{w}_2,\cdots ,\boldsymbol{w}_m}{\min}\sum_{i=1}^m{\boldsymbol{w}_{i}^{T}\boldsymbol{\tilde{X}}_{i}^{T}\boldsymbol{\tilde{X}}_i\boldsymbol{w}_i}\,\, \mathrm{s}.\mathrm{t}. \boldsymbol{w}_{i}^{T}\mathbf{1}_{k\times 1}=1\left( i=1,2,\cdots ,m \right) 
    
   
 </span><span class="katex-html"><span class="base"><span class="strut" style="height: 2.9291em; vertical-align: -1.2777em;"></span><span class="mord"><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.6679em;"><span class="" style="top: -2.4em; margin-left: 0em;"><span class="pstrut" style="height: 3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord boldsymbol mtight" style="margin-right: 0.0278em;">w</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3173em;"><span class="" style="top: -2.357em; margin-right: 0.0714em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.143em;"><span class=""></span></span></span></span></span></span><span class="mpunct mtight">,</span><span class="mord mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord boldsymbol mtight" style="margin-right: 0.0278em;">w</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3173em;"><span class="" style="top: -2.357em; margin-right: 0.0714em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.143em;"><span class=""></span></span></span></span></span></span><span class="mpunct mtight">,</span><span class="minner mtight">⋯</span><span class="mspace mtight" style="margin-right: 0.1952em;"></span><span class="mpunct mtight">,</span><span class="mord mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord boldsymbol mtight" style="margin-right: 0.0278em;">w</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.1645em;"><span class="" style="top: -2.357em; margin-right: 0.0714em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathnormal mtight">m</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.143em;"><span class=""></span></span></span></span></span></span></span></span></span><span class="" style="top: -3em;"><span class="pstrut" style="height: 3em;"></span><span class=""><span class="mop"><span class="mop">min</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.8361em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 1.6514em;"><span class="" style="top: -1.8723em; margin-left: 0em;"><span class="pstrut" style="height: 3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span class="" style="top: -3.05em;"><span class="pstrut" style="height: 3.05em;"></span><span class=""><span class="mop op-symbol large-op">∑</span></span></span><span class="" style="top: -4.3em; margin-left: 0em;"><span class="pstrut" style="height: 3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">m</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 1.2777em;"><span class=""></span></span></span></span></span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right: 0.0278em;">w</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.8913em;"><span class="" style="top: -2.453em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="" style="top: -3.113em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right: 0.1389em;">T</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.247em;"><span class=""></span></span></span></span></span></span><span class="mord"><span class="mord"><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.9495em;"><span class="" style="top: -3em;"><span class="pstrut" style="height: 3em;"></span><span class="mord boldsymbol" style="margin-right: 0.0778em;">X</span></span><span class="" style="top: -3.6051em;"><span class="pstrut" style="height: 3em;"></span><span class="accent-body" style="left: -0.2875em;"><span class="mord mathbf">~</span></span></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 1.1808em;"><span class="" style="top: -2.453em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="" style="top: -3.4024em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right: 0.1389em;">T</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.247em;"><span class=""></span></span></span></span></span></span><span class="mord"><span class="mord"><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.9495em;"><span class="" style="top: -3em;"><span class="pstrut" style="height: 3em;"></span><span class="mord boldsymbol" style="margin-right: 0.0778em;">X</span></span><span class="" style="top: -3.6051em;"><span class="pstrut" style="height: 3em;"></span><span class="accent-body" style="left: -0.2875em;"><span class="mord mathbf">~</span></span></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3117em;"><span class="" style="top: -2.55em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right: 0.0278em;">w</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3117em;"><span class="" style="top: -2.55em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="mord mathrm">s</span><span class="mord">.</span><span class="mord mathrm">t</span><span class="mord">.</span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right: 0.0278em;">w</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.8913em;"><span class="" style="top: -2.453em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="" style="top: -3.113em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right: 0.1389em;">T</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.247em;"><span class=""></span></span></span></span></span></span><span class="mord"><span class="mord mathbf">1</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3361em;"><span class="" style="top: -2.55em; margin-left: 0em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right: 0.0315em;">k</span><span class="mbin mtight">×</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.2083em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: 0.2778em;"></span></span><span class="base"><span class="strut" style="height: 1em; vertical-align: -0.25em;"></span><span class="mord">1</span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top: 0em;">(</span><span class="mord mathnormal">i</span><span class="mspace" style="margin-right: 0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: 0.2778em;"></span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="mord">2</span><span class="mpunct">,</span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="mord mathnormal">m</span><span class="mclose delimcenter" style="top: 0em;">)</span></span></span></span></span></span></span></p> 

其中

      w 
     
    
      i 
     
    
   
     = 
    
    
     
     
       [ 
      
      
       
        
         
          
          
            w 
           
           
           
             i 
            
           
             1 
            
           
          
         
        
        
         
          
          
            w 
           
           
           
             i 
            
           
             2 
            
           
          
         
        
        
         
         
           ⋯ 
          
         
        
        
         
          
          
            w 
           
           
           
             i 
            
           
             k 
            
           
          
         
        
       
      
     
       ] 
      
     
    
      T 
     
    
   
  
    \boldsymbol{w}_i=\left[ <span class="MathJax_Preview" style="color: inherit;"><span class="MJXp-math MJXp-display" id="MJXp-Span-1"><span class="MJXp-mtable" id="MJXp-Span-2"><span><span class="MJXp-mtr" id="MJXp-Span-3" style="vertical-align: baseline;"><span class="MJXp-mtd" id="MJXp-Span-4" style="text-align: center;"><span class="MJXp-msubsup" id="MJXp-Span-5"><span class="MJXp-mi MJXp-italic" id="MJXp-Span-6" style="margin-right: 0.05em;">w</span><span class="MJXp-mrow MJXp-script" id="MJXp-Span-7" style="vertical-align: -0.4em;"><span class="MJXp-mi MJXp-italic" id="MJXp-Span-8">i</span><span class="MJXp-mn" id="MJXp-Span-9">1</span></span></span></span><span class="MJXp-mtd" id="MJXp-Span-10" style="padding-left: 1em; text-align: center;"><span class="MJXp-msubsup" id="MJXp-Span-11"><span class="MJXp-mi MJXp-italic" id="MJXp-Span-12" style="margin-right: 0.05em;">w</span><span class="MJXp-mrow MJXp-script" id="MJXp-Span-13" style="vertical-align: -0.4em;"><span class="MJXp-mi MJXp-italic" id="MJXp-Span-14">i</span><span class="MJXp-mn" id="MJXp-Span-15">2</span></span></span></span><span class="MJXp-mtd" id="MJXp-Span-16" style="padding-left: 1em; text-align: center;"><span class="MJXp-mo" id="MJXp-Span-17" style="margin-left: 0em; margin-right: 0em;">⋯</span></span><span class="MJXp-mtd" id="MJXp-Span-18" style="padding-left: 1em; text-align: center;"><span class="MJXp-msubsup" id="MJXp-Span-19"><span class="MJXp-mi MJXp-italic" id="MJXp-Span-20" style="margin-right: 0.05em;">w</span><span class="MJXp-mrow MJXp-script" id="MJXp-Span-21" style="vertical-align: -0.4em;"><span class="MJXp-mi MJXp-italic" id="MJXp-Span-22">i</span><span class="MJXp-mi MJXp-italic" id="MJXp-Span-23">k</span></span></span></span></span></span></span></span></span><script type="math/tex; mode=display" id="MathJax-Element-1">\begin{matrix} w_{i1}& w_{i2}& \cdots& w_{ik}\\\end{matrix}</script> \right] ^T 
   
  
</span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.5944em; vertical-align: -0.15em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right: 0.0278em;">w</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3117em;"><span class="" style="top: -2.55em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: 0.2778em;"></span></span><span class="base"><span class="strut" style="height: 1.4312em; vertical-align: -0.35em;"></span><span class="minner"><span class="minner"><span class="mopen delimcenter" style="top: 0em;"><span class="delimsizing size1">[</span></span><span class="mord"><span class="mtable"><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.85em;"><span class="" style="top: -3.01em;"><span class="pstrut" style="height: 3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right: 0.0269em;">w</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3117em;"><span class="" style="top: -2.55em; margin-left: -0.0269em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.35em;"><span class=""></span></span></span></span></span><span class="arraycolsep" style="width: 0.5em;"></span><span class="arraycolsep" style="width: 0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.85em;"><span class="" style="top: -3.01em;"><span class="pstrut" style="height: 3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right: 0.0269em;">w</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3117em;"><span class="" style="top: -2.55em; margin-left: -0.0269em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.35em;"><span class=""></span></span></span></span></span><span class="arraycolsep" style="width: 0.5em;"></span><span class="arraycolsep" style="width: 0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.85em;"><span class="" style="top: -3.01em;"><span class="pstrut" style="height: 3em;"></span><span class="mord"><span class="minner">⋯</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.35em;"><span class=""></span></span></span></span></span><span class="arraycolsep" style="width: 0.5em;"></span><span class="arraycolsep" style="width: 0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.85em;"><span class="" style="top: -3.01em;"><span class="pstrut" style="height: 3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right: 0.0269em;">w</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3361em;"><span class="" style="top: -2.55em; margin-left: -0.0269em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right: 0.0315em;">ik</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.35em;"><span class=""></span></span></span></span></span></span></span><span class="mclose delimcenter" style="top: 0em;"><span class="delimsizing size1">]</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 1.0812em;"><span class="" style="top: -3.3029em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right: 0.1389em;">T</span></span></span></span></span></span></span></span></span></span></span></span>,<span class="katex--inline"><span class="katex"><span class="katex-mathml"> 
 
  
   
    
     
      
      
        X 
       
      
        ~ 
       
      
     
    
      i 
     
    
   
     = 
    
    
    
      [ 
     
     
      
       
        
         
          
          
            x 
           
          
            i 
           
          
         
           − 
          
          
          
            x 
           
           
           
             j 
            
           
             1 
            
           
          
         
        
       
       
        
         
          
          
            x 
           
          
            i 
           
          
         
           − 
          
          
          
            x 
           
           
           
             j 
            
           
             2 
            
           
          
         
        
       
       
        
        
          ⋯ 
         
        
       
       
        
         
          
          
            x 
           
          
            i 
           
          
         
           − 
          
          
          
            x 
           
           
           
             j 
            
           
             k 
            
           
          
         
        
       
      
     
    
      ] 
     
    
   
     , 
    
   
     j 
    
   
     ∈ 
    
    
    
      Q 
     
    
      i 
     
    
      k 
     
    
   
  
    \boldsymbol{\tilde{X}}_i=\left[ <script type="math/tex; mode=display">\begin{matrix} \boldsymbol{x}_i-\boldsymbol{x}_{j_1}& \boldsymbol{x}_i-\boldsymbol{x}_{j_2}& \cdots& \boldsymbol{x}_i-\boldsymbol{x}_{j_k}\\\end{matrix}</script> \right] , j\in Q_{i}^{k} 
   
  
</span><span class="katex-html"><span class="base"><span class="strut" style="height: 1.0995em; vertical-align: -0.15em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.9495em;"><span class="" style="top: -3em;"><span class="pstrut" style="height: 3em;"></span><span class="mord boldsymbol" style="margin-right: 0.0778em;">X</span></span><span class="" style="top: -3.6051em;"><span class="pstrut" style="height: 3em;"></span><span class="accent-body" style="left: -0.2875em;"><span class="mord mathbf">~</span></span></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3117em;"><span class="" style="top: -2.55em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: 0.2778em;"></span></span><span class="base"><span class="strut" style="height: 1.2em; vertical-align: -0.35em;"></span><span class="minner"><span class="mopen delimcenter" style="top: 0em;"><span class="delimsizing size1">[</span></span><span class="mord"><span class="mtable"><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.85em;"><span class="" style="top: -3.01em;"><span class="pstrut" style="height: 3em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3117em;"><span class="" style="top: -2.55em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right: 0.2222em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3117em;"><span class="" style="top: -2.55em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right: 0.0572em;">j</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3173em;"><span class="" style="top: -2.357em; margin-left: -0.0572em; margin-right: 0.0714em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.143em;"><span class=""></span></span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.2861em;"><span class=""></span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.35em;"><span class=""></span></span></span></span></span><span class="arraycolsep" style="width: 0.5em;"></span><span class="arraycolsep" style="width: 0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.85em;"><span class="" style="top: -3.01em;"><span class="pstrut" style="height: 3em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3117em;"><span class="" style="top: -2.55em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right: 0.2222em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3117em;"><span class="" style="top: -2.55em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right: 0.0572em;">j</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3173em;"><span class="" style="top: -2.357em; margin-left: -0.0572em; margin-right: 0.0714em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.143em;"><span class=""></span></span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.2861em;"><span class=""></span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.35em;"><span class=""></span></span></span></span></span><span class="arraycolsep" style="width: 0.5em;"></span><span class="arraycolsep" style="width: 0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.85em;"><span class="" style="top: -3.01em;"><span class="pstrut" style="height: 3em;"></span><span class="mord"><span class="minner">⋯</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.35em;"><span class=""></span></span></span></span></span><span class="arraycolsep" style="width: 0.5em;"></span><span class="arraycolsep" style="width: 0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.85em;"><span class="" style="top: -3.01em;"><span class="pstrut" style="height: 3em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3117em;"><span class="" style="top: -2.55em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right: 0.2222em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3117em;"><span class="" style="top: -2.55em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right: 0.0572em;">j</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3448em;"><span class="" style="top: -2.3488em; margin-left: -0.0572em; margin-right: 0.0714em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathnormal mtight" style="margin-right: 0.0315em;">k</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.1512em;"><span class=""></span></span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.2861em;"><span class=""></span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.35em;"><span class=""></span></span></span></span></span></span></span><span class="mclose delimcenter" style="top: 0em;"><span class="delimsizing size1">]</span></span></span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="mord mathnormal" style="margin-right: 0.0572em;">j</span><span class="mspace" style="margin-right: 0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right: 0.2778em;"></span></span><span class="base"><span class="strut" style="height: 1.1078em; vertical-align: -0.2587em;"></span><span class="mord"><span class="mord mathnormal">Q</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.8491em;"><span class="" style="top: -2.4413em; margin-left: 0em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="" style="top: -3.063em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right: 0.0315em;">k</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.2587em;"><span class=""></span></span></span></span></span></span></span></span></span></span>,应用拉格朗日乘子法可得</p> 

      L 
     
     
     
       ( 
      
      
      
        w 
       
      
        1 
       
      
     
       , 
      
      
      
        w 
       
      
        2 
       
      
     
       , 
      
     
       ⋯ 
       
     
       , 
      
      
      
        w 
       
      
        m 
       
      
     
       , 
      
     
       λ 
      
     
       ) 
      
     
    
      = 
     
     
     
       ∑ 
      
      
      
        i 
       
      
        = 
       
      
        1 
       
      
     
       m 
      
     
     
      
      
        w 
       
      
        i 
       
      
        T 
       
      
      
       
        
        
          X 
         
        
          ~ 
         
        
       
      
        i 
       
      
        T 
       
      
      
       
        
        
          X 
         
        
          ~ 
         
        
       
      
        i 
       
      
      
      
        w 
       
      
        i 
       
      
     
    
      + 
     
    
      λ 
     
     
     
       ( 
      
      
      
        w 
       
      
        i 
       
      
        T 
       
      
      
      
        1 
       
       
       
         k 
        
       
         × 
        
       
         1 
        
       
      
     
       − 
      
     
       1 
      
     
       ) 
      
     
    
   
     L\left( \boldsymbol{w}_1,\boldsymbol{w}_2,\cdots ,\boldsymbol{w}_m,\lambda \right) =\sum_{i=1}^m{\boldsymbol{w}_{i}^{T}\boldsymbol{\tilde{X}}_{i}^{T}\boldsymbol{\tilde{X}}_i\boldsymbol{w}_i}+\lambda \left( \boldsymbol{w}_{i}^{T}\mathbf{1}_{k\times 1}-1 \right) 
    
   
 </span><span class="katex-html"><span class="base"><span class="strut" style="height: 1em; vertical-align: -0.25em;"></span><span class="mord mathnormal">L</span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top: 0em;">(</span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right: 0.0278em;">w</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3011em;"><span class="" style="top: -2.55em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right: 0.0278em;">w</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3011em;"><span class="" style="top: -2.55em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right: 0.0278em;">w</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.1514em;"><span class="" style="top: -2.55em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">m</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="mord mathnormal">λ</span><span class="mclose delimcenter" style="top: 0em;">)</span></span><span class="mspace" style="margin-right: 0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: 0.2778em;"></span></span><span class="base"><span class="strut" style="height: 2.9291em; vertical-align: -1.2777em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 1.6514em;"><span class="" style="top: -1.8723em; margin-left: 0em;"><span class="pstrut" style="height: 3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span class="" style="top: -3.05em;"><span class="pstrut" style="height: 3.05em;"></span><span class=""><span class="mop op-symbol large-op">∑</span></span></span><span class="" style="top: -4.3em; margin-left: 0em;"><span class="pstrut" style="height: 3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">m</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 1.2777em;"><span class=""></span></span></span></span></span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right: 0.0278em;">w</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.8913em;"><span class="" style="top: -2.453em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="" style="top: -3.113em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right: 0.1389em;">T</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.247em;"><span class=""></span></span></span></span></span></span><span class="mord"><span class="mord"><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.9495em;"><span class="" style="top: -3em;"><span class="pstrut" style="height: 3em;"></span><span class="mord boldsymbol" style="margin-right: 0.0778em;">X</span></span><span class="" style="top: -3.6051em;"><span class="pstrut" style="height: 3em;"></span><span class="accent-body" style="left: -0.2875em;"><span class="mord mathbf">~</span></span></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 1.1808em;"><span class="" style="top: -2.453em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="" style="top: -3.4024em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right: 0.1389em;">T</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.247em;"><span class=""></span></span></span></span></span></span><span class="mord"><span class="mord"><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.9495em;"><span class="" style="top: -3em;"><span class="pstrut" style="height: 3em;"></span><span class="mord boldsymbol" style="margin-right: 0.0778em;">X</span></span><span class="" style="top: -3.6051em;"><span class="pstrut" style="height: 3em;"></span><span class="accent-body" style="left: -0.2875em;"><span class="mord mathbf">~</span></span></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3117em;"><span class="" style="top: -2.55em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right: 0.0278em;">w</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3117em;"><span class="" style="top: -2.55em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right: 0.2222em;"></span></span><span class="base"><span class="strut" style="height: 1.2413em; vertical-align: -0.35em;"></span><span class="mord mathnormal">λ</span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top: 0em;"><span class="delimsizing size1">(</span></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right: 0.0278em;">w</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.8913em;"><span class="" style="top: -2.453em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="" style="top: -3.113em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right: 0.1389em;">T</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.247em;"><span class=""></span></span></span></span></span></span><span class="mord"><span class="mord mathbf">1</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3361em;"><span class="" style="top: -2.55em; margin-left: 0em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right: 0.0315em;">k</span><span class="mbin mtight">×</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.2083em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right: 0.2222em;"></span><span class="mord">1</span><span class="mclose delimcenter" style="top: 0em;"><span class="delimsizing size1">)</span></span></span></span></span></span></span></span></p> 

      w 
     
    
      i 
     
    
   
  
    \boldsymbol{w}_i 
   
  
</span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.5944em; vertical-align: -0.15em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right: 0.0278em;">w</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3117em;"><span class="" style="top: -2.55em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span></span></span></span></span>求梯度,并令之为0可得</p> 

           ∇ 
          
          
          
            w 
           
          
            i 
           
          
         
        
          L 
         
         
         
           ( 
          
          
          
            w 
           
          
            1 
           
          
         
           , 
          
          
          
            w 
           
          
            2 
           
          
         
           , 
          
         
           ⋯ 
           
         
           , 
          
          
          
            w 
           
          
            m 
           
          
         
           , 
          
         
           λ 
          
         
           ) 
          
         
        
       
      
      
       
        
         
        
          = 
         
         
         
           w 
          
         
           i 
          
         
           T 
          
         
         
          
           
           
             X 
            
           
             ~ 
            
           
          
         
           i 
          
         
           T 
          
         
         
          
           
           
             X 
            
           
             ~ 
            
           
          
         
           i 
          
         
         
         
           w 
          
         
           i 
          
         
        
          + 
         
        
          λ 
         
         
         
           ( 
          
          
          
            w 
           
          
            i 
           
          
            T 
           
          
          
          
            1 
           
           
           
             k 
            
           
             × 
            
           
             1 
            
           
          
         
           − 
          
         
           1 
          
         
           ) 
          
         
        
       
      
     
     
      
       
        
       
      
      
       
        
         
        
          = 
         
        
          2 
         
         
          
           
           
             X 
            
           
             ~ 
            
           
          
         
           i 
          
         
           T 
          
         
         
          
           
           
             X 
            
           
             ~ 
            
           
          
         
           i 
          
         
         
         
           w 
          
         
           i 
          
         
        
          + 
         
        
          λ 
         
         
         
           1 
          
          
          
            k 
           
          
            × 
           
          
            1 
           
          
         
        
       
      
     
     
      
       
        
       
      
      
       
        
         
        
          = 
         
        
          0 
         
        
       
      
     
     
      
       
        
        
          ⇒ 
           
         
         
           w 
          
         
           i 
          
         
        
       
      
      
       
        
         
        
          = 
         
        
          − 
         
         
         
           1 
          
         
           2 
          
         
        
          λ 
         
         
          
          
            ( 
           
           
            
             
             
               X 
              
             
               ~ 
              
             
            
           
             i 
            
           
             T 
            
           
           
            
             
             
               X 
              
             
               ~ 
              
             
            
           
             i 
            
           
          
            ) 
           
          
          
          
            − 
           
          
            1 
           
          
         
         
         
           1 
          
          
          
            k 
           
          
            × 
           
          
            1 
           
          
         
        
       
      
     
    
   
     <script type="math/tex; mode=display">\begin{aligned}\nabla _{\boldsymbol{w}_i}L\left( \boldsymbol{w}_1,\boldsymbol{w}_2,\cdots ,\boldsymbol{w}_m,\lambda \right) &=\boldsymbol{w}_{i}^{T}\boldsymbol{\tilde{X}}_{i}^{T}\boldsymbol{\tilde{X}}_i\boldsymbol{w}_i+\lambda \left( \boldsymbol{w}_{i}^{T}\mathbf{1}_{k\times 1}-1 \right) \\&=2\boldsymbol{\tilde{X}}_{i}^{T}\boldsymbol{\tilde{X}}_i\boldsymbol{w}_i+\lambda \mathbf{1}_{k\times 1}\\&=0\\\Rightarrow \,\, \boldsymbol{w}_i&=-\frac{1}{2}\lambda \left( \boldsymbol{\tilde{X}}_{i}^{T}\boldsymbol{\tilde{X}}_i \right) ^{-1}\mathbf{1}_{k\times 1}\end{aligned}</script> 
    
   
 </span><span class="katex-html"><span class="base"><span class="strut" style="height: 7.5524em; vertical-align: -3.5262em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 4.0262em;"><span class="" style="top: -6.2302em;"><span class="pstrut" style="height: 3.3848em;"></span><span class="mord"><span class="mord"><span class="mord">∇</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.1611em;"><span class="" style="top: -2.55em; margin-left: 0em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord boldsymbol mtight" style="margin-right: 0.0278em;">w</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3281em;"><span class="" style="top: -2.357em; margin-right: 0.0714em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.143em;"><span class=""></span></span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.2501em;"><span class=""></span></span></span></span></span></span><span class="mord mathnormal">L</span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top: 0em;">(</span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right: 0.0278em;">w</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3011em;"><span class="" style="top: -2.55em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right: 0.0278em;">w</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3011em;"><span class="" style="top: -2.55em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right: 0.0278em;">w</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.1514em;"><span class="" style="top: -2.55em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">m</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="mord mathnormal">λ</span><span class="mclose delimcenter" style="top: 0em;">)</span></span></span></span><span class="" style="top: -4.3894em;"><span class="pstrut" style="height: 3.3848em;"></span><span class="mord"></span></span><span class="" style="top: -2.8894em;"><span class="pstrut" style="height: 3.3848em;"></span><span class="mord"></span></span><span class="" style="top: -0.8446em;"><span class="pstrut" style="height: 3.3848em;"></span><span class="mord"><span class="mrel">⇒</span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="mspace" style="margin-right: 0.2778em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right: 0.0278em;">w</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3117em;"><span class="" style="top: -2.55em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 3.5262em;"><span class=""></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 4.0262em;"><span class="" style="top: -6.2302em;"><span class="pstrut" style="height: 3.3848em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right: 0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: 0.2778em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right: 0.0278em;">w</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.8913em;"><span class="" style="top: -2.453em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="" style="top: -3.113em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right: 0.1389em;">T</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.247em;"><span class=""></span></span></span></span></span></span><span class="mord"><span class="mord"><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.9495em;"><span class="" style="top: -3em;"><span class="pstrut" style="height: 3em;"></span><span class="mord boldsymbol" style="margin-right: 0.0778em;">X</span></span><span class="" style="top: -3.6051em;"><span class="pstrut" style="height: 3em;"></span><span class="accent-body" style="left: -0.2875em;"><span class="mord mathbf">~</span></span></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 1.1808em;"><span class="" style="top: -2.453em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="" style="top: -3.4024em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right: 0.1389em;">T</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.247em;"><span class=""></span></span></span></span></span></span><span class="mord"><span class="mord"><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.9495em;"><span class="" style="top: -3em;"><span class="pstrut" style="height: 3em;"></span><span class="mord boldsymbol" style="margin-right: 0.0778em;">X</span></span><span class="" style="top: -3.6051em;"><span class="pstrut" style="height: 3em;"></span><span class="accent-body" style="left: -0.2875em;"><span class="mord mathbf">~</span></span></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3117em;"><span class="" style="top: -2.55em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right: 0.0278em;">w</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3117em;"><span class="" style="top: -2.55em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right: 0.2222em;"></span><span class="mord mathnormal">λ</span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top: 0em;"><span class="delimsizing size1">(</span></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right: 0.0278em;">w</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.8913em;"><span class="" style="top: -2.453em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="" style="top: -3.113em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right: 0.1389em;">T</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.247em;"><span class=""></span></span></span></span></span></span><span class="mord"><span class="mord mathbf">1</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3361em;"><span class="" style="top: -2.55em; margin-left: 0em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right: 0.0315em;">k</span><span class="mbin mtight">×</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.2083em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right: 0.2222em;"></span><span class="mord">1</span><span class="mclose delimcenter" style="top: 0em;"><span class="delimsizing size1">)</span></span></span></span></span><span class="" style="top: -4.3894em;"><span class="pstrut" style="height: 3.3848em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right: 0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: 0.2778em;"></span><span class="mord">2</span><span class="mord"><span class="mord"><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.9495em;"><span class="" style="top: -3em;"><span class="pstrut" style="height: 3em;"></span><span class="mord boldsymbol" style="margin-right: 0.0778em;">X</span></span><span class="" style="top: -3.6051em;"><span class="pstrut" style="height: 3em;"></span><span class="accent-body" style="left: -0.2875em;"><span class="mord mathbf">~</span></span></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 1.1808em;"><span class="" style="top: -2.453em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="" style="top: -3.4024em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right: 0.1389em;">T</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.247em;"><span class=""></span></span></span></span></span></span><span class="mord"><span class="mord"><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.9495em;"><span class="" style="top: -3em;"><span class="pstrut" style="height: 3em;"></span><span class="mord boldsymbol" style="margin-right: 0.0778em;">X</span></span><span class="" style="top: -3.6051em;"><span class="pstrut" style="height: 3em;"></span><span class="accent-body" style="left: -0.2875em;"><span class="mord mathbf">~</span></span></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3117em;"><span class="" style="top: -2.55em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right: 0.0278em;">w</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3117em;"><span class="" style="top: -2.55em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right: 0.2222em;"></span><span class="mord mathnormal">λ</span><span class="mord"><span class="mord mathbf">1</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3361em;"><span class="" style="top: -2.55em; margin-left: 0em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right: 0.0315em;">k</span><span class="mbin mtight">×</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.2083em;"><span class=""></span></span></span></span></span></span></span></span><span class="" style="top: -2.8894em;"><span class="pstrut" style="height: 3.3848em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right: 0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: 0.2778em;"></span><span class="mord">0</span></span></span><span class="" style="top: -0.8446em;"><span class="pstrut" style="height: 3.3848em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right: 0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: 0.2778em;"></span><span class="mord">−</span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 1.3214em;"><span class="" style="top: -2.314em;"><span class="pstrut" style="height: 3em;"></span><span class="mord"><span class="mord">2</span></span></span><span class="" style="top: -3.23em;"><span class="pstrut" style="height: 3em;"></span><span class="frac-line" style="border-bottom-width: 0.04em;"></span></span><span class="" style="top: -3.677em;"><span class="pstrut" style="height: 3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.686em;"><span class=""></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord mathnormal">λ</span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="minner"><span class="minner"><span class="mopen delimcenter" style="top: 0em;"><span class="delimsizing size2">(</span></span><span class="mord"><span class="mord"><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.9495em;"><span class="" style="top: -3em;"><span class="pstrut" style="height: 3em;"></span><span class="mord boldsymbol" style="margin-right: 0.0778em;">X</span></span><span class="" style="top: -3.6051em;"><span class="pstrut" style="height: 3em;"></span><span class="accent-body" style="left: -0.2875em;"><span class="mord mathbf">~</span></span></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 1.1808em;"><span class="" style="top: -2.453em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="" style="top: -3.4024em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right: 0.1389em;">T</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.247em;"><span class=""></span></span></span></span></span></span><span class="mord"><span class="mord"><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.9495em;"><span class="" style="top: -3em;"><span class="pstrut" style="height: 3em;"></span><span class="mord boldsymbol" style="margin-right: 0.0778em;">X</span></span><span class="" style="top: -3.6051em;"><span class="pstrut" style="height: 3em;"></span><span class="accent-body" style="left: -0.2875em;"><span class="mord mathbf">~</span></span></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3117em;"><span class="" style="top: -2.55em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span><span class="mclose delimcenter" style="top: 0em;"><span class="delimsizing size2">)</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 1.3848em;"><span class="" style="top: -3.6337em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="mord"><span class="mord mathbf">1</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3361em;"><span class="" style="top: -2.55em; margin-left: 0em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right: 0.0315em;">k</span><span class="mbin mtight">×</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.2083em;"><span class=""></span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 3.5262em;"><span class=""></span></span></span></span></span></span></span></span></span></span></span></span></p> 

考虑到

      w 
     
    
      i 
     
    
      T 
     
    
    
    
      1 
     
     
     
       k 
      
     
       × 
      
     
       1 
      
     
    
   
     = 
    
    
    
      1 
     
     
     
       k 
      
     
       × 
      
     
       1 
      
     
    
      T 
     
    
    
    
      w 
     
    
      i 
     
    
   
     = 
    
   
     1 
    
   
  
    \boldsymbol{w}_{i}^{T}\mathbf{1}_{k\times 1}=\mathbf{1}_{k\times 1}^{T}\boldsymbol{w}_i=1 
   
  
</span><span class="katex-html"><span class="base"><span class="strut" style="height: 1.1em; vertical-align: -0.2587em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right: 0.0278em;">w</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.8413em;"><span class="" style="top: -2.4413em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="" style="top: -3.063em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right: 0.1389em;">T</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.2587em;"><span class=""></span></span></span></span></span></span><span class="mord"><span class="mord mathbf">1</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3361em;"><span class="" style="top: -2.55em; margin-left: 0em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right: 0.0315em;">k</span><span class="mbin mtight">×</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.2083em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: 0.2778em;"></span></span><span class="base"><span class="strut" style="height: 1.1828em; vertical-align: -0.3414em;"></span><span class="mord"><span class="mord mathbf">1</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.8413em;"><span class="" style="top: -2.4169em; margin-left: 0em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right: 0.0315em;">k</span><span class="mbin mtight">×</span><span class="mord mtight">1</span></span></span></span><span class="" style="top: -3.063em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right: 0.1389em;">T</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.3414em;"><span class=""></span></span></span></span></span></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right: 0.0278em;">w</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3117em;"><span class="" style="top: -2.55em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: 0.2778em;"></span></span><span class="base"><span class="strut" style="height: 0.6444em;"></span><span class="mord">1</span></span></span></span></span>,两边同时左乘<span class="katex--inline"><span class="katex"><span class="katex-mathml"> 
 
  
   
    
    
      1 
     
     
     
       k 
      
     
       × 
      
     
       1 
      
     
    
      T 
     
    
   
  
    \mathbf{1}_{k\times 1}^{T} 
   
  
</span><span class="katex-html"><span class="base"><span class="strut" style="height: 1.1828em; vertical-align: -0.3414em;"></span><span class="mord"><span class="mord mathbf">1</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.8413em;"><span class="" style="top: -2.4169em; margin-left: 0em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right: 0.0315em;">k</span><span class="mbin mtight">×</span><span class="mord mtight">1</span></span></span></span><span class="" style="top: -3.063em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right: 0.1389em;">T</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.3414em;"><span class=""></span></span></span></span></span></span></span></span></span></span>可得</p> 

      − 
     
     
     
       1 
      
     
       2 
      
     
    
      λ 
     
    
      = 
     
     
     
       1 
      
      
       
       
         1 
        
        
        
          k 
         
        
          × 
         
        
          1 
         
        
       
         T 
        
       
       
        
        
          ( 
         
         
          
           
           
             X 
            
           
             ~ 
            
           
          
         
           i 
          
         
           T 
          
         
         
          
           
           
             X 
            
           
             ~ 
            
           
          
         
           i 
          
         
        
          ) 
         
        
        
        
          − 
         
        
          1 
         
        
       
       
       
         1 
        
        
        
          k 
         
        
          × 
         
        
          1 
         
        
       
      
     
    
   
     -\frac{1}{2}\lambda =\frac{1}{\mathbf{1}_{k\times 1}^{T}\left( \boldsymbol{\tilde{X}}_{i}^{T}\boldsymbol{\tilde{X}}_i \right) ^{-1}\mathbf{1}_{k\times 1}} 
    
   
 </span><span class="katex-html"><span class="base"><span class="strut" style="height: 2.0074em; vertical-align: -0.686em;"></span><span class="mord">−</span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 1.3214em;"><span class="" style="top: -2.314em;"><span class="pstrut" style="height: 3em;"></span><span class="mord"><span class="mord">2</span></span></span><span class="" style="top: -3.23em;"><span class="pstrut" style="height: 3em;"></span><span class="frac-line" style="border-bottom-width: 0.04em;"></span></span><span class="" style="top: -3.677em;"><span class="pstrut" style="height: 3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.686em;"><span class=""></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord mathnormal">λ</span><span class="mspace" style="margin-right: 0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: 0.2778em;"></span></span><span class="base"><span class="strut" style="height: 3.2462em; vertical-align: -1.9248em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 1.3214em;"><span class="" style="top: -2.11em;"><span class="pstrut" style="height: 3.3848em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">1</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.8231em;"><span class="" style="top: -2.3987em; margin-left: 0em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right: 0.0315em;">k</span><span class="mbin mtight">×</span><span class="mord mtight">1</span></span></span></span><span class="" style="top: -3.0448em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right: 0.1389em;">T</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.3596em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="minner"><span class="minner"><span class="mopen delimcenter" style="top: 0em;"><span class="delimsizing size2">(</span></span><span class="mord"><span class="mord"><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.9495em;"><span class="" style="top: -3em;"><span class="pstrut" style="height: 3em;"></span><span class="mord boldsymbol" style="margin-right: 0.0778em;">X</span></span><span class="" style="top: -3.6051em;"><span class="pstrut" style="height: 3em;"></span><span class="accent-body" style="left: -0.2875em;"><span class="mord mathbf">~</span></span></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 1.1808em;"><span class="" style="top: -2.453em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="" style="top: -3.4024em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right: 0.1389em;">T</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.247em;"><span class=""></span></span></span></span></span></span><span class="mord"><span class="mord"><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.9495em;"><span class="" style="top: -3em;"><span class="pstrut" style="height: 3em;"></span><span class="mord boldsymbol" style="margin-right: 0.0778em;">X</span></span><span class="" style="top: -3.6051em;"><span class="pstrut" style="height: 3em;"></span><span class="accent-body" style="left: -0.2875em;"><span class="mord mathbf">~</span></span></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3117em;"><span class="" style="top: -2.55em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span><span class="mclose delimcenter" style="top: 0em;"><span class="delimsizing size2">)</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 1.3848em;"><span class="" style="top: -3.6337em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="mord"><span class="mord mathbf">1</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3361em;"><span class="" style="top: -2.55em; margin-left: 0em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right: 0.0315em;">k</span><span class="mbin mtight">×</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.2083em;"><span class=""></span></span></span></span></span></span></span></span><span class="" style="top: -3.6148em;"><span class="pstrut" style="height: 3.3848em;"></span><span class="frac-line" style="border-bottom-width: 0.04em;"></span></span><span class="" style="top: -4.0618em;"><span class="pstrut" style="height: 3.3848em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 1.9248em;"><span class=""></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></span></p> 

联立消去

     λ 
    
   
  
    \lambda 
   
  
</span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.6944em;"></span><span class="mord mathnormal">λ</span></span></span></span></span>可得</p> 

       w 
      
     
       i 
      
     
    
      = 
     
     
      
       
        
        
          ( 
         
         
          
           
           
             X 
            
           
             ~ 
            
           
          
         
           i 
          
         
           T 
          
         
         
          
           
           
             X 
            
           
             ~ 
            
           
          
         
           i 
          
         
        
          ) 
         
        
        
        
          − 
         
        
          1 
         
        
       
       
       
         1 
        
        
        
          k 
         
        
          × 
         
        
          1 
         
        
       
      
      
       
       
         1 
        
        
        
          k 
         
        
          × 
         
        
          1 
         
        
       
         T 
        
       
       
        
        
          ( 
         
         
          
           
           
             X 
            
           
             ~ 
            
           
          
         
           i 
          
         
           T 
          
         
         
          
           
           
             X 
            
           
             ~ 
            
           
          
         
           i 
          
         
        
          ) 
         
        
        
        
          − 
         
        
          1 
         
        
       
       
       
         1 
        
        
        
          k 
         
        
          × 
         
        
          1 
         
        
       
      
     
    
   
     \boldsymbol{w}_i=\frac{\left( \boldsymbol{\tilde{X}}_{i}^{T}\boldsymbol{\tilde{X}}_i \right) ^{-1}\mathbf{1}_{k\times 1}}{\mathbf{1}_{k\times 1}^{T}\left( \boldsymbol{\tilde{X}}_{i}^{T}\boldsymbol{\tilde{X}}_i \right) ^{-1}\mathbf{1}_{k\times 1}} 
    
   
 </span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.5944em; vertical-align: -0.15em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right: 0.0278em;">w</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3117em;"><span class="" style="top: -2.55em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: 0.2778em;"></span></span><span class="base"><span class="strut" style="height: 4.3496em; vertical-align: -1.9248em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 2.4248em;"><span class="" style="top: -2.11em;"><span class="pstrut" style="height: 3.3848em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">1</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.8231em;"><span class="" style="top: -2.3987em; margin-left: 0em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right: 0.0315em;">k</span><span class="mbin mtight">×</span><span class="mord mtight">1</span></span></span></span><span class="" style="top: -3.0448em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right: 0.1389em;">T</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.3596em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="minner"><span class="minner"><span class="mopen delimcenter" style="top: 0em;"><span class="delimsizing size2">(</span></span><span class="mord"><span class="mord"><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.9495em;"><span class="" style="top: -3em;"><span class="pstrut" style="height: 3em;"></span><span class="mord boldsymbol" style="margin-right: 0.0778em;">X</span></span><span class="" style="top: -3.6051em;"><span class="pstrut" style="height: 3em;"></span><span class="accent-body" style="left: -0.2875em;"><span class="mord mathbf">~</span></span></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 1.1808em;"><span class="" style="top: -2.453em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="" style="top: -3.4024em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right: 0.1389em;">T</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.247em;"><span class=""></span></span></span></span></span></span><span class="mord"><span class="mord"><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.9495em;"><span class="" style="top: -3em;"><span class="pstrut" style="height: 3em;"></span><span class="mord boldsymbol" style="margin-right: 0.0778em;">X</span></span><span class="" style="top: -3.6051em;"><span class="pstrut" style="height: 3em;"></span><span class="accent-body" style="left: -0.2875em;"><span class="mord mathbf">~</span></span></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3117em;"><span class="" style="top: -2.55em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span><span class="mclose delimcenter" style="top: 0em;"><span class="delimsizing size2">)</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 1.3848em;"><span class="" style="top: -3.6337em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="mord"><span class="mord mathbf">1</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3361em;"><span class="" style="top: -2.55em; margin-left: 0em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right: 0.0315em;">k</span><span class="mbin mtight">×</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.2083em;"><span class=""></span></span></span></span></span></span></span></span><span class="" style="top: -3.6148em;"><span class="pstrut" style="height: 3.3848em;"></span><span class="frac-line" style="border-bottom-width: 0.04em;"></span></span><span class="" style="top: -4.4248em;"><span class="pstrut" style="height: 3.3848em;"></span><span class="mord"><span class="minner"><span class="minner"><span class="mopen delimcenter" style="top: 0em;"><span class="delimsizing size2">(</span></span><span class="mord"><span class="mord"><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.9495em;"><span class="" style="top: -3em;"><span class="pstrut" style="height: 3em;"></span><span class="mord boldsymbol" style="margin-right: 0.0778em;">X</span></span><span class="" style="top: -3.6051em;"><span class="pstrut" style="height: 3em;"></span><span class="accent-body" style="left: -0.2875em;"><span class="mord mathbf">~</span></span></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 1.1808em;"><span class="" style="top: -2.453em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="" style="top: -3.4024em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right: 0.1389em;">T</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.247em;"><span class=""></span></span></span></span></span></span><span class="mord"><span class="mord"><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.9495em;"><span class="" style="top: -3em;"><span class="pstrut" style="height: 3em;"></span><span class="mord boldsymbol" style="margin-right: 0.0778em;">X</span></span><span class="" style="top: -3.6051em;"><span class="pstrut" style="height: 3em;"></span><span class="accent-body" style="left: -0.2875em;"><span class="mord mathbf">~</span></span></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3117em;"><span class="" style="top: -2.55em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span><span class="mclose delimcenter" style="top: 0em;"><span class="delimsizing size2">)</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 1.3848em;"><span class="" style="top: -3.6337em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="mord"><span class="mord mathbf">1</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3361em;"><span class="" style="top: -2.55em; margin-left: 0em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right: 0.0315em;">k</span><span class="mbin mtight">×</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.2083em;"><span class=""></span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 1.9248em;"><span class=""></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></span></p> 

在低维空间中需要维护这组

      w 
     
    
      i 
     
    
    
    
      ( 
     
    
      i 
     
    
      = 
     
    
      1 
     
    
      , 
     
    
      2 
     
    
      , 
     
    
      ⋯ 
      
    
      , 
     
    
      m 
     
    
      ) 
     
    
   
     ∈ 
    
    
    
      R 
     
     
     
       k 
      
     
       × 
      
     
       1 
      
     
    
   
  
    \boldsymbol{w}_i\left( i=1,2,\cdots ,m \right) \in \mathbb{R} ^{k\times 1} 
   
  
</span><span class="katex-html"><span class="base"><span class="strut" style="height: 1em; vertical-align: -0.25em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right: 0.0278em;">w</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3117em;"><span class="" style="top: -2.55em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top: 0em;">(</span><span class="mord mathnormal">i</span><span class="mspace" style="margin-right: 0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: 0.2778em;"></span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="mord">2</span><span class="mpunct">,</span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="mord mathnormal">m</span><span class="mclose delimcenter" style="top: 0em;">)</span></span><span class="mspace" style="margin-right: 0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right: 0.2778em;"></span></span><span class="base"><span class="strut" style="height: 0.8491em;"></span><span class="mord"><span class="mord mathbb">R</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.8491em;"><span class="" style="top: -3.063em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right: 0.0315em;">k</span><span class="mbin mtight">×</span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span></span></span></span></span>,因此优化目标为</p> 

         min 
        
       
         ⁡ 
        
       
       
        
        
          z 
         
        
          1 
         
        
       
         , 
        
        
        
          z 
         
        
          2 
         
        
       
         , 
        
       
         ⋯ 
         
       
         , 
        
        
        
          z 
         
        
          m 
         
        
       
      
     
     
     
       ∑ 
      
      
      
        i 
       
      
        = 
       
      
        1 
       
      
     
       m 
      
     
     
      
      
        ∥ 
       
       
       
         z 
        
       
         i 
        
       
      
        − 
       
       
       
         ∑ 
        
        
        
          j 
         
        
          ∈ 
         
         
         
           Q 
          
         
           i 
          
         
           k 
          
         
        
       
       
        
        
          w 
         
         
         
           i 
          
         
           j 
          
         
        
        
        
          z 
         
        
          j 
         
        
       
      
        ∥ 
       
      
     
       2 
      
     
       2 
      
       
    
      s 
     
    
      . 
     
    
      t 
     
    
      . 
     
     
     
       ∑ 
      
     
       i 
      
     
     
     
       z 
      
     
       i 
      
     
    
      = 
     
    
      0 
     
    
      , 
     
     
     
       1 
      
      
      
        m 
       
      
        − 
       
      
        1 
       
      
     
     
     
       ∑ 
      
     
       i 
      
     
     
     
       z 
      
     
       i 
      
     
     
     
       z 
      
     
       i 
      
     
       T 
      
     
    
      = 
     
    
      I 
     
    
   
     \underset{\boldsymbol{z}_1,\boldsymbol{z}_2,\cdots ,\boldsymbol{z}_m}{\min}\sum_{i=1}^m{\left\| \boldsymbol{z}_i-\sum_{j\in Q_{i}^{k}}{w_{ij}\boldsymbol{z}_j} \right\| _{2}^{2}}\,\, \mathrm{s}.\mathrm{t}. \sum_i{\boldsymbol{z}_i}=0, \frac{1}{m-1}\sum_i{\boldsymbol{z}_i}\boldsymbol{z}_{i}^{T}=\boldsymbol{I} 
    
   
 </span><span class="katex-html"><span class="base"><span class="strut" style="height: 3.9339em; vertical-align: -1.6799em;"></span><span class="mord"><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.6679em;"><span class="" style="top: -2.4em; margin-left: 0em;"><span class="pstrut" style="height: 3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord boldsymbol mtight" style="margin-right: 0.0421em;">z</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3173em;"><span class="" style="top: -2.357em; margin-right: 0.0714em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.143em;"><span class=""></span></span></span></span></span></span><span class="mpunct mtight">,</span><span class="mord mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord boldsymbol mtight" style="margin-right: 0.0421em;">z</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3173em;"><span class="" style="top: -2.357em; margin-right: 0.0714em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.143em;"><span class=""></span></span></span></span></span></span><span class="mpunct mtight">,</span><span class="minner mtight">⋯</span><span class="mspace mtight" style="margin-right: 0.1952em;"></span><span class="mpunct mtight">,</span><span class="mord mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord boldsymbol mtight" style="margin-right: 0.0421em;">z</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.1645em;"><span class="" style="top: -2.357em; margin-right: 0.0714em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathnormal mtight">m</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.143em;"><span class=""></span></span></span></span></span></span></span></span></span><span class="" style="top: -3em;"><span class="pstrut" style="height: 3em;"></span><span class=""><span class="mop"><span class="mop">min</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.8361em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 1.6514em;"><span class="" style="top: -1.8723em; margin-left: 0em;"><span class="pstrut" style="height: 3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span class="" style="top: -3.05em;"><span class="pstrut" style="height: 3.05em;"></span><span class=""><span class="mop op-symbol large-op">∑</span></span></span><span class="" style="top: -4.3em; margin-left: 0em;"><span class="pstrut" style="height: 3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">m</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 1.2777em;"><span class=""></span></span></span></span></span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="mord"><span class="minner"><span class="minner"><span class="mopen"><span class="delimsizing mult"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 2.05em;"><span class="" style="top: -4.05em;"><span class="pstrut" style="height: 5.6em;"></span><span class="" style="width: 0.556em; height: 3.6em;"> 
            <svg width="0.556em" height="3.600em" viewBox="0 0 556 3600"> 
             <path d="M145 15 v585 v2400 v585 c2.667,10,9.667,15,21,15

c10,0,16.667,-5,20,-15 v-585 v-2400 v-585 c-2.667,-10,-9.667,-15,-21,-15
c-10,0,-16.667,5,-20,15z M188 15 H145 v585 v2400 v585 h43z
M367 15 v585 v2400 v585 c2.667,10,9.667,15,21,15
c10,0,16.667,-5,20,-15 v-585 v-2400 v-585 c-2.667,-10,-9.667,-15,-21,-15
c-10,0,-16.667,5,-20,15z M410 15 H367 v585 v2400 v585 h43z">
zijQikwijzj


22s.t.izi=0,m11iziziT=I

将重构向量增广为

        w 
       
      
        ~ 
       
      
     
    
      i 
     
    
   
     ∈ 
    
    
    
      R 
     
     
     
       m 
      
     
       × 
      
     
       1 
      
     
    
   
  
    \boldsymbol{\tilde{w}}_i\in \mathbb{R} ^{m\times 1} 
   
  
</span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.8579em; vertical-align: -0.15em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.7079em;"><span class="" style="top: -3em;"><span class="pstrut" style="height: 3em;"></span><span class="mord boldsymbol" style="margin-right: 0.0278em;">w</span></span><span class="" style="top: -3.3634em;"><span class="pstrut" style="height: 3em;"></span><span class="accent-body" style="left: -0.2875em;"><span class="mord mathbf">~</span></span></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3117em;"><span class="" style="top: -2.55em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right: 0.2778em;"></span></span><span class="base"><span class="strut" style="height: 0.8141em;"></span><span class="mord"><span class="mord mathbb">R</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.8141em;"><span class="" style="top: -3.063em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">m</span><span class="mbin mtight">×</span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span></span></span></span></span>,多余的位置为0;约束条件表示了降维样本的分布模式——<font color="#f00"><strong>样本中心化去除平移自由度、样本单位协方差去除缩放自由度</strong></font>。</p> 

将优化目标改为矩阵形式

             min 
            
           
             ⁡ 
            
           
          
            Z 
           
          
         
         
         
           ∑ 
          
          
          
            i 
           
          
            = 
           
          
            1 
           
          
         
           m 
          
         
         
          
          
            ∥ 
           
           
            
             
             
               Z 
              
             
               i 
              
             
            
           
             i 
            
           
          
            − 
           
           
            
             
             
               Z 
              
              
              
                w 
               
              
                ~ 
               
              
             
            
           
             i 
            
           
          
            ∥ 
           
          
         
           2 
          
         
           2 
          
         
        
       
      
      
       
        
         
        
          = 
         
         
          
           
           
             min 
            
           
             ⁡ 
            
           
          
            Z 
           
          
         
         
         
           ∑ 
          
          
          
            i 
           
          
            = 
           
          
            1 
           
          
         
           m 
          
         
         
          
           
           
             ( 
            
           
             Z 
            
            
            
              ( 
             
             
             
               i 
              
             
               i 
              
             
            
              − 
             
             
              
               
               
                 w 
                
               
                 ~ 
                
               
              
             
               i 
              
             
            
              ) 
             
            
           
             ) 
            
           
          
            T 
           
          
         
           Z 
          
          
          
            ( 
           
           
           
             i 
            
           
             i 
            
           
          
            − 
           
           
            
             
             
               w 
              
             
               ~ 
              
             
            
           
             i 
            
           
          
            ) 
           
          
         
        
       
      
     
     
      
       
        
       
      
      
       
        
         
        
          = 
         
         
          
           
           
             min 
            
           
             ⁡ 
            
           
          
            Z 
           
          
           
         
         
           t 
          
         
           r 
          
         
         
         
           ( 
          
         
           Z 
          
          
          
            ( 
           
          
            I 
           
          
            − 
           
           
            
            
              W 
             
            
              ~ 
             
            
           
          
            ) 
           
          
          
           
           
             ( 
            
           
             Z 
            
            
            
              ( 
             
            
              I 
             
            
              − 
             
             
              
              
                W 
               
              
                ~ 
               
              
             
            
              ) 
             
            
           
             ) 
            
           
          
            T 
           
          
         
           ) 
          
         
        
       
      
     
     
      
       
        
       
      
      
       
        
         
        
          = 
         
         
          
           
           
             min 
            
           
             ⁡ 
            
           
          
            Z 
           
          
           
         
         
           t 
          
         
           r 
          
         
         
         
           ( 
          
          
           
            
            
              Z 
             
            
              M 
             
            
              Z 
             
            
           
          
            T 
           
          
         
           ) 
          
           
        
       
      
     
     
      
       
        
        
          s 
         
        
          . 
         
        
          t 
         
        
          . 
         
         
          
           
           
             Z 
            
           
             Z 
            
           
          
         
           T 
          
         
        
       
      
      
       
        
         
        
          = 
         
         
         
           ( 
          
         
           m 
          
         
           − 
          
         
           1 
          
         
           ) 
          
         
        
          I 
         
        
       
      
     
    
   
     <script type="math/tex; mode=display">\begin{aligned}\underset{\boldsymbol{Z}}{\min}\sum_{i=1}^m{\left\| \boldsymbol{Zi}_i-\boldsymbol{Z\tilde{w}}_i \right\| _{2}^{2}}&=\underset{\boldsymbol{Z}}{\min}\sum_{i=1}^m{\left( \boldsymbol{Z}\left( \boldsymbol{i}_i-\boldsymbol{\tilde{w}}_i \right) \right) ^T\boldsymbol{Z}\left( \boldsymbol{i}_i-\boldsymbol{\tilde{w}}_i \right)}\\&=\underset{\boldsymbol{Z}}{\min}\,\,\mathrm{tr}\left( \boldsymbol{Z}\left( \boldsymbol{I}-\boldsymbol{\tilde{W}} \right) \left( \boldsymbol{Z}\left( \boldsymbol{I}-\boldsymbol{\tilde{W}} \right) \right) ^T \right) \\&=\underset{\boldsymbol{Z}}{\min}\,\,\mathrm{tr}\left( \boldsymbol{ZMZ}^T \right) \,\, \\\mathrm{s}.\mathrm{t}. \boldsymbol{ZZ}^T&=\left( m-1 \right) I\end{aligned}</script> 
    
   
 </span><span class="katex-html"><span class="base"><span class="strut" style="height: 9.7027em; vertical-align: -4.6014em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 5.1014em;"><span class="" style="top: -7.1014em;"><span class="pstrut" style="height: 3.6514em;"></span><span class="mord"><span class="mord"><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.6679em;"><span class="" style="top: -2.3537em; margin-left: 0em;"><span class="pstrut" style="height: 3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord boldsymbol mtight" style="margin-right: 0.0698em;">Z</span></span></span></span></span></span><span class="" style="top: -3em;"><span class="pstrut" style="height: 3em;"></span><span class=""><span class="mop"><span class="mop">min</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.7463em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 1.6514em;"><span class="" style="top: -1.8723em; margin-left: 0em;"><span class="pstrut" style="height: 3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span class="" style="top: -3.05em;"><span class="pstrut" style="height: 3.05em;"></span><span class=""><span class="mop op-symbol large-op">∑</span></span></span><span class="" style="top: -4.3em; margin-left: 0em;"><span class="pstrut" style="height: 3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">m</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 1.2777em;"><span class=""></span></span></span></span></span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="mord"><span class="minner"><span class="minner"><span class="mopen delimcenter" style="top: 0em;">∥</span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol">Zi</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3117em;"><span class="" style="top: -2.55em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right: 0.2222em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right: 0.0698em;">Z</span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.7079em;"><span class="" style="top: -3em;"><span class="pstrut" style="height: 3em;"></span><span class="mord boldsymbol" style="margin-right: 0.0278em;">w</span></span><span class="" style="top: -3.3634em;"><span class="pstrut" style="height: 3em;"></span><span class="accent-body" style="left: -0.2875em;"><span class="mord mathbf">~</span></span></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3117em;"><span class="" style="top: -2.55em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span><span class="mclose delimcenter" style="top: 0em;">∥</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.954em;"><span class="" style="top: -2.4003em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span><span class="" style="top: -3.2029em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.2997em;"><span class=""></span></span></span></span></span></span></span></span></span><span class="" style="top: -4.0737em;"><span class="pstrut" style="height: 3.6514em;"></span><span class="mord"></span></span><span class="" style="top: -1.6737em;"><span class="pstrut" style="height: 3.6514em;"></span><span class="mord"></span></span><span class="" style="top: 0.29em;"><span class="pstrut" style="height: 3.6514em;"></span><span class="mord"><span class="mord mathrm">s</span><span class="mord">.</span><span class="mord mathrm">t</span><span class="mord">.</span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right: 0.0698em;">ZZ</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.9173em;"><span class="" style="top: -3.139em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right: 0.1389em;">T</span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 4.6014em;"><span class=""></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 5.1014em;"><span class="" style="top: -7.1014em;"><span class="pstrut" style="height: 3.6514em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right: 0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: 0.2778em;"></span><span class="mord"><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.6679em;"><span class="" style="top: -2.3537em; margin-left: 0em;"><span class="pstrut" style="height: 3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord boldsymbol mtight" style="margin-right: 0.0698em;">Z</span></span></span></span></span></span><span class="" style="top: -3em;"><span class="pstrut" style="height: 3em;"></span><span class=""><span class="mop"><span class="mop">min</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.7463em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 1.6514em;"><span class="" style="top: -1.8723em; margin-left: 0em;"><span class="pstrut" style="height: 3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span class="" style="top: -3.05em;"><span class="pstrut" style="height: 3.05em;"></span><span class=""><span class="mop op-symbol large-op">∑</span></span></span><span class="" style="top: -4.3em; margin-left: 0em;"><span class="pstrut" style="height: 3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">m</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 1.2777em;"><span class=""></span></span></span></span></span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="mord"><span class="minner"><span class="minner"><span class="mopen delimcenter" style="top: 0em;">(</span><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right: 0.0698em;">Z</span></span></span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top: 0em;">(</span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol">i</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3117em;"><span class="" style="top: -2.55em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right: 0.2222em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.7079em;"><span class="" style="top: -3em;"><span class="pstrut" style="height: 3em;"></span><span class="mord boldsymbol" style="margin-right: 0.0278em;">w</span></span><span class="" style="top: -3.3634em;"><span class="pstrut" style="height: 3em;"></span><span class="accent-body" style="left: -0.2875em;"><span class="mord mathbf">~</span></span></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3117em;"><span class="" style="top: -2.55em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span><span class="mclose delimcenter" style="top: 0em;">)</span></span><span class="mclose delimcenter" style="top: 0em;">)</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.9812em;"><span class="" style="top: -3.2029em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right: 0.1389em;">T</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right: 0.0698em;">Z</span></span></span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top: 0em;">(</span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol">i</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3117em;"><span class="" style="top: -2.55em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right: 0.2222em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.7079em;"><span class="" style="top: -3em;"><span class="pstrut" style="height: 3em;"></span><span class="mord boldsymbol" style="margin-right: 0.0278em;">w</span></span><span class="" style="top: -3.3634em;"><span class="pstrut" style="height: 3em;"></span><span class="accent-body" style="left: -0.2875em;"><span class="mord mathbf">~</span></span></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.3117em;"><span class="" style="top: -2.55em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span><span class="mclose delimcenter" style="top: 0em;">)</span></span></span></span></span><span class="" style="top: -4.0737em;"><span class="pstrut" style="height: 3.6514em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right: 0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: 0.2778em;"></span><span class="mord"><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.6679em;"><span class="" style="top: -2.3537em; margin-left: 0em;"><span class="pstrut" style="height: 3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord boldsymbol mtight" style="margin-right: 0.0698em;">Z</span></span></span></span></span></span><span class="" style="top: -3em;"><span class="pstrut" style="height: 3em;"></span><span class=""><span class="mop"><span class="mop">min</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.7463em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top: 0em;"><span class="delimsizing size3">(</span></span><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right: 0.0698em;">Z</span></span></span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top: 0em;"><span class="delimsizing size2">(</span></span><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right: 0.0778em;">I</span></span></span><span class="mspace" style="margin-right: 0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right: 0.2222em;"></span><span class="mord"><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.9495em;"><span class="" style="top: -3em;"><span class="pstrut" style="height: 3em;"></span><span class="mord boldsymbol" style="margin-right: 0.1597em;">W</span></span><span class="" style="top: -3.6051em;"><span class="pstrut" style="height: 3em;"></span><span class="accent-body" style="left: -0.2875em;"><span class="mord mathbf">~</span></span></span></span></span></span></span></span></span><span class="mclose delimcenter" style="top: 0em;"><span class="delimsizing size2">)</span></span></span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="minner"><span class="minner"><span class="mopen delimcenter" style="top: 0em;"><span class="delimsizing size2">(</span></span><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right: 0.0698em;">Z</span></span></span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top: 0em;"><span class="delimsizing size2">(</span></span><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right: 0.0778em;">I</span></span></span><span class="mspace" style="margin-right: 0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right: 0.2222em;"></span><span class="mord"><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.9495em;"><span class="" style="top: -3em;"><span class="pstrut" style="height: 3em;"></span><span class="mord boldsymbol" style="margin-right: 0.1597em;">W</span></span><span class="" style="top: -3.6051em;"><span class="pstrut" style="height: 3em;"></span><span class="accent-body" style="left: -0.2875em;"><span class="mord mathbf">~</span></span></span></span></span></span></span></span></span><span class="mclose delimcenter" style="top: 0em;"><span class="delimsizing size2">)</span></span></span><span class="mclose delimcenter" style="top: 0em;"><span class="delimsizing size2">)</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 1.3812em;"><span class="" style="top: -3.6029em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right: 0.1389em;">T</span></span></span></span></span></span></span></span><span class="mclose delimcenter" style="top: 0em;"><span class="delimsizing size3">)</span></span></span></span></span><span class="" style="top: -1.6737em;"><span class="pstrut" style="height: 3.6514em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right: 0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: 0.2778em;"></span><span class="mord"><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.6679em;"><span class="" style="top: -2.3537em; margin-left: 0em;"><span class="pstrut" style="height: 3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord boldsymbol mtight" style="margin-right: 0.0698em;">Z</span></span></span></span></span></span><span class="" style="top: -3em;"><span class="pstrut" style="height: 3em;"></span><span class=""><span class="mop"><span class="mop">min</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.7463em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top: 0em;"><span class="delimsizing size2">(</span></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right: 0.0698em;">ZMZ</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.9173em;"><span class="" style="top: -3.139em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right: 0.1389em;">T</span></span></span></span></span></span></span></span><span class="mclose delimcenter" style="top: 0em;"><span class="delimsizing size2">)</span></span></span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="mspace" style="margin-right: 0.1667em;"></span></span></span><span class="" style="top: 0.29em;"><span class="pstrut" style="height: 3.6514em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right: 0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: 0.2778em;"></span><span class="minner"><span class="mopen delimcenter" style="top: 0em;">(</span><span class="mord mathnormal">m</span><span class="mspace" style="margin-right: 0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right: 0.2222em;"></span><span class="mord">1</span><span class="mclose delimcenter" style="top: 0em;">)</span></span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="mord mathnormal" style="margin-right: 0.0785em;">I</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 4.6014em;"><span class=""></span></span></span></span></span></span></span></span></span></span></span></span></p> 

采用拉格朗日乘子法

      L 
     
     
     
       ( 
      
     
       Z 
      
     
       , 
      
     
       Λ 
      
     
       ) 
      
     
    
      = 
     
     
     
       t 
      
     
       r 
      
     
     
     
       ( 
      
      
       
        
        
          Z 
         
        
          M 
         
        
          Z 
         
        
       
      
        T 
       
      
     
       ) 
      
     
    
      + 
     
     
     
       t 
      
     
       r 
      
     
     
     
       ( 
      
      
      
        Λ 
       
      
        T 
       
      
      
      
        ( 
       
       
        
         
         
           Z 
          
         
           Z 
          
         
        
       
         T 
        
       
      
        − 
       
       
       
         ( 
        
       
         m 
        
       
         − 
        
       
         1 
        
       
         ) 
        
       
      
        I 
       
      
        ) 
       
      
     
       ) 
      
     
    
   
     L\left( \boldsymbol{Z},\boldsymbol{\varLambda } \right) =\mathrm{tr}\left( \boldsymbol{ZMZ}^T \right) +\mathrm{tr}\left( \boldsymbol{\varLambda }^T\left( \boldsymbol{ZZ}^T-\left( m-1 \right) \boldsymbol{I} \right) \right) 
    
   
 </span><span class="katex-html"><span class="base"><span class="strut" style="height: 1em; vertical-align: -0.25em;"></span><span class="mord mathnormal">L</span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top: 0em;">(</span><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right: 0.0698em;">Z</span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="mord"><span class="mord"><span class="mord mathit">Λ</span></span></span><span class="mclose delimcenter" style="top: 0em;">)</span></span><span class="mspace" style="margin-right: 0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: 0.2778em;"></span></span><span class="base"><span class="strut" style="height: 1.8em; vertical-align: -0.65em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top: 0em;"><span class="delimsizing size2">(</span></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right: 0.0698em;">ZMZ</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.9173em;"><span class="" style="top: -3.139em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right: 0.1389em;">T</span></span></span></span></span></span></span></span><span class="mclose delimcenter" style="top: 0em;"><span class="delimsizing size2">)</span></span></span><span class="mspace" style="margin-right: 0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right: 0.2222em;"></span></span><span class="base"><span class="strut" style="height: 1.8em; vertical-align: -0.65em;"></span><span class="mord"><span class="mord mathrm">tr</span></span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top: 0em;"><span class="delimsizing size2">(</span></span><span class="mord"><span class="mord"><span class="mord"><span class="mord mathit">Λ</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.9146em;"><span class="" style="top: -3.1362em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right: 0.1389em;">T</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top: 0em;"><span class="delimsizing size2">(</span></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right: 0.0698em;">ZZ</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.9173em;"><span class="" style="top: -3.139em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right: 0.1389em;">T</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right: 0.2222em;"></span><span class="minner"><span class="mopen delimcenter" style="top: 0em;">(</span><span class="mord mathnormal">m</span><span class="mspace" style="margin-right: 0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right: 0.2222em;"></span><span class="mord">1</span><span class="mclose delimcenter" style="top: 0em;">)</span></span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right: 0.0778em;">I</span></span></span><span class="mclose delimcenter" style="top: 0em;"><span class="delimsizing size2">)</span></span></span><span class="mclose delimcenter" style="top: 0em;"><span class="delimsizing size2">)</span></span></span></span></span></span></span></span></p> 

       ∂ 
      
     
       L 
      
      
      
        ( 
       
      
        Z 
       
      
        , 
       
      
        Λ 
       
      
        ) 
       
      
     
    
      / 
     
     
     
       ∂ 
      
     
       Z 
      
     
    
   
     = 
    
   
     2 
    
    
     
     
       Z 
      
     
       M 
      
     
    
   
     + 
    
   
     2 
    
    
     
     
       Λ 
      
     
       Z 
      
     
    
   
     = 
    
   
     0 
    
   
  
    {<!-- -->{\partial L\left( \boldsymbol{Z},\boldsymbol{\varLambda } \right)}/{\partial \boldsymbol{Z}}}=2\boldsymbol{ZM}+2\boldsymbol{\varLambda Z}=0 
   
  
</span><span class="katex-html"><span class="base"><span class="strut" style="height: 1em; vertical-align: -0.25em;"></span><span class="mord"><span class="mord"><span class="mord" style="margin-right: 0.0556em;">∂</span><span class="mord mathnormal">L</span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top: 0em;">(</span><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right: 0.0698em;">Z</span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="mord"><span class="mord"><span class="mord mathit">Λ</span></span></span><span class="mclose delimcenter" style="top: 0em;">)</span></span></span><span class="mord">/</span><span class="mord"><span class="mord" style="margin-right: 0.0556em;">∂</span><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right: 0.0698em;">Z</span></span></span></span></span><span class="mspace" style="margin-right: 0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: 0.2778em;"></span></span><span class="base"><span class="strut" style="height: 0.7694em; vertical-align: -0.0833em;"></span><span class="mord">2</span><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right: 0.1142em;">ZM</span></span></span><span class="mspace" style="margin-right: 0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right: 0.2222em;"></span></span><span class="base"><span class="strut" style="height: 0.6861em;"></span><span class="mord">2</span><span class="mord"><span class="mord"><span class="mord mathit">Λ</span><span class="mord boldsymbol" style="margin-right: 0.0698em;">Z</span></span></span><span class="mspace" style="margin-right: 0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: 0.2778em;"></span></span><span class="base"><span class="strut" style="height: 0.6444em;"></span><span class="mord">0</span></span></span></span></span>,移项转置可得<span class="katex--inline"><span class="katex"><span class="katex-mathml"> 
 
  
   
    
     
      
      
        M 
       
      
        Z 
       
      
     
    
      T 
     
    
   
     = 
    
   
     − 
    
    
    
      Z 
     
    
      T 
     
    
   
     Λ 
    
   
  
    \boldsymbol{MZ}^T=-\boldsymbol{Z}^T\boldsymbol{\varLambda } 
   
  
</span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.9173em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right: 0.0698em;">MZ</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.9173em;"><span class="" style="top: -3.139em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right: 0.1389em;">T</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: 0.2778em;"></span></span><span class="base"><span class="strut" style="height: 1.0007em; vertical-align: -0.0833em;"></span><span class="mord">−</span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right: 0.0698em;">Z</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.9173em;"><span class="" style="top: -3.139em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right: 0.1389em;">T</span></span></span></span></span></span></span></span><span class="mord"><span class="mord"><span class="mord mathit">Λ</span></span></span></span></span></span></span>。设<span class="katex--inline"><span class="katex"><span class="katex-mathml"> 
 
  
   
   
     Y 
    
   
     = 
    
    
    
      Z 
     
    
      T 
     
    
   
     ∈ 
    
    
    
      R 
     
     
     
       m 
      
     
       × 
      
     
       d 
      
     
    
   
  
    \boldsymbol{Y}=\boldsymbol{Z}^T\in \mathbb{R} ^{m\times d} 
   
  
</span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.6861em;"></span><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right: 0.2555em;">Y</span></span></span><span class="mspace" style="margin-right: 0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: 0.2778em;"></span></span><span class="base"><span class="strut" style="height: 0.9564em; vertical-align: -0.0391em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right: 0.0698em;">Z</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.9173em;"><span class="" style="top: -3.139em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right: 0.1389em;">T</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right: 0.2778em;"></span></span><span class="base"><span class="strut" style="height: 0.8491em;"></span><span class="mord"><span class="mord mathbb">R</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.8491em;"><span class="" style="top: -3.063em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">m</span><span class="mbin mtight">×</span><span class="mord mathnormal mtight">d</span></span></span></span></span></span></span></span></span></span></span></span></span>,则有<span class="katex--inline"><span class="katex"><span class="katex-mathml"> 
 
  
   
    
     
     
       M 
      
     
       Y 
      
     
    
   
     = 
    
   
     − 
    
    
     
     
       Y 
      
     
       Λ 
      
     
    
   
  
    \boldsymbol{MY}=-\boldsymbol{Y\varLambda } 
   
  
</span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.6861em;"></span><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right: 0.2555em;">MY</span></span></span><span class="mspace" style="margin-right: 0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: 0.2778em;"></span></span><span class="base"><span class="strut" style="height: 0.7694em; vertical-align: -0.0833em;"></span><span class="mord">−</span><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right: 0.2555em;">Y</span><span class="mord mathit">Λ</span></span></span></span></span></span></span>,这与<a href="https://mr-winter.blog.youkuaiyun.com/article/details/128699242">主成分分析</a>类似,只需对<span class="katex--inline"><span class="katex"><span class="katex-mathml"> 
 
  
   
   
     M 
    
   
  
    \boldsymbol{M} 
   
  
</span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.6861em;"></span><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right: 0.1142em;">M</span></span></span></span></span></span></span>特征值分解,并取<span class="katex--inline"><span class="katex"><span class="katex-mathml"> 
 
  
   
    
    
      d 
     
    
      ′ 
     
    
   
     ≪ 
    
   
     d 
    
   
  
    d'\ll d 
   
  
</span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.791em; vertical-align: -0.0391em;"></span><span class="mord"><span class="mord mathnormal">d</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.7519em;"><span class="" style="top: -3.063em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.2778em;"></span><span class="mrel">≪</span><span class="mspace" style="margin-right: 0.2778em;"></span></span><span class="base"><span class="strut" style="height: 0.6944em;"></span><span class="mord mathnormal">d</span></span></span></span></span>个最小特征值对应的特征向量构成<span class="katex--inline"><span class="katex"><span class="katex-mathml"> 
 
  
   
    
    
      Y 
     
    
      ∗ 
     
    
   
     ∈ 
    
    
    
      R 
     
     
     
       m 
      
     
       × 
      
      
      
        d 
       
      
        ′ 
       
      
     
    
   
  
    \boldsymbol{Y}^*\in \mathbb{R} ^{m\times d'} 
   
  
</span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.8038em; vertical-align: -0.0391em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right: 0.2555em;">Y</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.7647em;"><span class="" style="top: -3.139em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mbin mtight">∗</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right: 0.2778em;"></span></span><span class="base"><span class="strut" style="height: 0.9425em;"></span><span class="mord"><span class="mord mathbb">R</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.9425em;"><span class="" style="top: -3.063em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">m</span><span class="mbin mtight">×</span><span class="mord mtight"><span class="mord mathnormal mtight">d</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.8278em;"><span class="" style="top: -2.931em; margin-right: 0.0714em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span>,转置后即得低维样本<span class="katex--inline"><span class="katex"><span class="katex-mathml"> 
 
  
   
    
    
      Z 
     
    
      ∗ 
     
    
   
     ∈ 
    
    
    
      R 
     
     
      
      
        d 
       
      
        ′ 
       
      
     
       × 
      
     
       m 
      
     
    
   
  
    \boldsymbol{Z}^*\in \mathbb{R} ^{d'\times m} 
   
  
</span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.8038em; vertical-align: -0.0391em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right: 0.0698em;">Z</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.7647em;"><span class="" style="top: -3.139em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mbin mtight">∗</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right: 0.2778em;"></span></span><span class="base"><span class="strut" style="height: 0.9425em;"></span><span class="mord"><span class="mord mathbb">R</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.9425em;"><span class="" style="top: -3.063em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight">d</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.8278em;"><span class="" style="top: -2.931em; margin-right: 0.0714em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mbin mtight">×</span><span class="mord mathnormal mtight">m</span></span></span></span></span></span></span></span></span></span></span></span></span></p> 

必须指出,

     M 
    
   
  
    \boldsymbol{M} 
   
  
</span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.6861em;"></span><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right: 0.1142em;">M</span></span></span></span></span></span></span>最小的特征值往往接近0,原因是根据权重和为一<span class="katex--inline"><span class="katex"><span class="katex-mathml"> 
 
  
   
    
     
      
      
        W 
       
      
        ~ 
       
      
     
    
      T 
     
    
   
     1 
    
   
     = 
    
   
     1 
    
   
  
    \boldsymbol{\tilde{W}}^T\mathbf{1}=\mathbf{1} 
   
  
</span><span class="katex-html"><span class="base"><span class="strut" style="height: 1.1808em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.9495em;"><span class="" style="top: -3em;"><span class="pstrut" style="height: 3em;"></span><span class="mord boldsymbol" style="margin-right: 0.1597em;">W</span></span><span class="" style="top: -3.6051em;"><span class="pstrut" style="height: 3em;"></span><span class="accent-body" style="left: -0.2875em;"><span class="mord mathbf">~</span></span></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 1.1808em;"><span class="" style="top: -3.4024em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right: 0.1389em;">T</span></span></span></span></span></span></span></span><span class="mord mathbf">1</span><span class="mspace" style="margin-right: 0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: 0.2778em;"></span></span><span class="base"><span class="strut" style="height: 0.6444em;"></span><span class="mord mathbf">1</span></span></span></span></span>可得<span class="katex--inline"><span class="katex"><span class="katex-mathml"> 
 
  
   
    
    
      ( 
     
    
      I 
     
    
      − 
     
     
      
       
       
         W 
        
       
         ~ 
        
       
      
     
       T 
      
     
    
      ) 
     
    
   
     1 
    
   
     = 
    
    
     
     
       ( 
      
     
       I 
      
     
       − 
      
      
       
       
         W 
        
       
         ~ 
        
       
      
     
       ) 
      
     
    
      T 
     
    
   
     1 
    
   
     = 
    
   
     0 
    
   
  
    \left( \boldsymbol{I}-\boldsymbol{\tilde{W}}^T \right) \mathbf{1}=\left( \boldsymbol{I}-\boldsymbol{\tilde{W}} \right) ^T\mathbf{1}=\mathbf{0} 
   
  
</span><span class="katex-html"><span class="base"><span class="strut" style="height: 1.8308em; vertical-align: -0.65em;"></span><span class="minner"><span class="mopen delimcenter" style="top: 0em;"><span class="delimsizing size2">(</span></span><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right: 0.0778em;">I</span></span></span><span class="mspace" style="margin-right: 0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right: 0.2222em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.9495em;"><span class="" style="top: -3em;"><span class="pstrut" style="height: 3em;"></span><span class="mord boldsymbol" style="margin-right: 0.1597em;">W</span></span><span class="" style="top: -3.6051em;"><span class="pstrut" style="height: 3em;"></span><span class="accent-body" style="left: -0.2875em;"><span class="mord mathbf">~</span></span></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 1.1808em;"><span class="" style="top: -3.4024em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right: 0.1389em;">T</span></span></span></span></span></span></span></span><span class="mclose delimcenter" style="top: 0em;"><span class="delimsizing size2">)</span></span></span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="mord mathbf">1</span><span class="mspace" style="margin-right: 0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: 0.2778em;"></span></span><span class="base"><span class="strut" style="height: 2.0313em; vertical-align: -0.65em;"></span><span class="minner"><span class="minner"><span class="mopen delimcenter" style="top: 0em;"><span class="delimsizing size2">(</span></span><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right: 0.0778em;">I</span></span></span><span class="mspace" style="margin-right: 0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right: 0.2222em;"></span><span class="mord"><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.9495em;"><span class="" style="top: -3em;"><span class="pstrut" style="height: 3em;"></span><span class="mord boldsymbol" style="margin-right: 0.1597em;">W</span></span><span class="" style="top: -3.6051em;"><span class="pstrut" style="height: 3em;"></span><span class="accent-body" style="left: -0.2875em;"><span class="mord mathbf">~</span></span></span></span></span></span></span></span></span><span class="mclose delimcenter" style="top: 0em;"><span class="delimsizing size2">)</span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 1.3812em;"><span class="" style="top: -3.6029em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right: 0.1389em;">T</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.1667em;"></span><span class="mord mathbf">1</span><span class="mspace" style="margin-right: 0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: 0.2778em;"></span></span><span class="base"><span class="strut" style="height: 0.6444em;"></span><span class="mord mathbf">0</span></span></span></span></span>,两边同时左乘<span class="katex--inline"><span class="katex"><span class="katex-mathml"> 
 
  
   
   
     ( 
    
   
     I 
    
   
     − 
    
    
     
     
       W 
      
     
       ~ 
      
     
    
   
     ) 
    
   
  
    \left( \boldsymbol{I}-\boldsymbol{\tilde{W}} \right) 
   
  
</span><span class="katex-html"><span class="base"><span class="strut" style="height: 1.8em; vertical-align: -0.65em;"></span><span class="minner"><span class="mopen delimcenter" style="top: 0em;"><span class="delimsizing size2">(</span></span><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right: 0.0778em;">I</span></span></span><span class="mspace" style="margin-right: 0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right: 0.2222em;"></span><span class="mord"><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.9495em;"><span class="" style="top: -3em;"><span class="pstrut" style="height: 3em;"></span><span class="mord boldsymbol" style="margin-right: 0.1597em;">W</span></span><span class="" style="top: -3.6051em;"><span class="pstrut" style="height: 3em;"></span><span class="accent-body" style="left: -0.2875em;"><span class="mord mathbf">~</span></span></span></span></span></span></span></span></span><span class="mclose delimcenter" style="top: 0em;"><span class="delimsizing size2">)</span></span></span></span></span></span></span>有<span class="katex--inline"><span class="katex"><span class="katex-mathml"> 
 
  
   
   
     M 
    
   
     1 
    
   
     = 
    
   
     0 
    
   
  
    \boldsymbol{M}\mathbf{1}=\mathbf{0} 
   
  
</span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.6861em;"></span><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right: 0.1142em;">M</span></span></span><span class="mord mathbf">1</span><span class="mspace" style="margin-right: 0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: 0.2778em;"></span></span><span class="base"><span class="strut" style="height: 0.6444em;"></span><span class="mord mathbf">0</span></span></span></span></span>,即此时特征向量为全1向量,无法反应数据特征,所以实际应用中会选取第<span class="katex--inline"><span class="katex"><span class="katex-mathml"> 
 
  
   
   
     2 
    
   
     &nbsp; 
    
    
    
      d 
     
    
      ′ 
     
    
   
     + 
    
   
     1 
    
   
  
    2~d'+1 
   
  
</span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.8352em; vertical-align: -0.0833em;"></span><span class="mord">2</span><span class="mspace nobreak">&nbsp;</span><span class="mord"><span class="mord mathnormal">d</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.7519em;"><span class="" style="top: -3.063em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right: 0.2222em;"></span></span><span class="base"><span class="strut" style="height: 0.6444em;"></span><span class="mord">1</span></span></span></span></span>个最小特征值对应的特征向量。</p> 

3 Python实现

3.1 算法流程

LLE算法流程如表所示,原理与第二节一一对应,不熟悉的同学可以往上翻

在这里插入图片描述

3.2 核心代码

LLE核心代码实现如下

def run(self, outDim):
     # 获得距离矩阵
     D = self.calDist()
     D[D < 0] = 0
     # 获得样本近邻索引矩阵
     DIndex = np.argsort(D, axis=1)[:, 1:self.k + 1]
     # 重构系数矩阵
     W = np.zeros([self.m, self.m])
     # 全1向量 kx1
     unitK = np.ones([self.k, 1])
     # 根据近邻样本确定重构参数
     for i in range(self.m):
         # Xi近邻距离矩阵
         Xi = self.X[:, i].reshape(self.d, 1) - self.X[:, DIndex[i, :]]
         # 求逆,附加项防止矩阵不稳定
         XiInv = np.linalg.pinv(np.dot(Xi.T, Xi) + np.eye(self.k) * self.tol)
         wi = np.dot(XiInv, unitK) / np.dot(np.dot(unitK.T , XiInv), unitK)
         for j in range(self.k):
             W[DIndex[i, j], i] = wi[j]
     # 计算M矩阵
     M = np.dot((np.eye(self.m) - W), (np.eye(self.m) - W).T)
     # 特征值分解
     eigVal, eigVec = np.linalg.eig(M)
     # 获取最小的d'个特征值对应的索引
     index = np.argsort(np.abs(eigVal))[1:outDim + 1]
     eigVec_ = eigVec[:, index]
     # 计算低维样本
     Z = eigVec_.T
     return Z

 
 
 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29

3.3 可视化

在这里插入图片描述

在这里插入图片描述

本文完整工程代码请通过下方名片联系博主获取


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值