斯坦福开源学术研究神器STORM再进化,AI智能体像人一样进行圆桌讨论

来源 | 机器之心

今年 4 月,斯坦福大学推出了一款利用大语言模型(LLM)辅助编写类维基百科文章的神器。它就是开源的 STORM,可以在三分钟左右将你输入的主题转换为长篇文章或者研究论文,并能够以 PDF 格式直接下载。

具体来讲,STORM 在 LLM 的协助下,通过检索、多角度提问和模拟专家对话等方式,在整理收集到的信息基础上生成写作大纲,并最终形成一份详细、深入和准确的内容报告。STORM 尤其擅长需要大量研究和引用的写作任务。更难得的是,用户可以直接在 STORM 的网站免费体验。

此后,STORM 不断推出新的功能和服务,在 GitHub 上的 Star 量已经超过了 12k。

图片

GitHub 地址:https://github.com/stanford-oval/storm

就在最近,该团队又推出全新功能 ——Co-STORM。与 STORM 的区别在于,它引入了协作对话机制,并采用轮次管理策略,实现流畅的协作式 AI 学术研究。功能包括如下:

Co-STORM LLM 专家:这种类型的智能体会根据外部知识来源生成答案并能根据对话历史提出后续问题。

主持人(Moderator):该智能体会根据检索器发现但未在前几轮直接使用的信息生成发人深省的问题。当然,问题生成也可以基于事实。

人类用户:人类用户将主动观察对话以更深入地了解主题,或者通过注入对话来引导讨论焦点,积极参与对话。

Co-STORM 的界面是下面这样的。

图片

体验地址:https://storm.genie.stanford.edu/

我们让 Co-STORM 就战争与和平(war and peace)主题来生成一篇文章,大约需要三分钟。

图片

在生成文章之后,我们可以看到,主持人提出问题,并得到基本信息提供者、文学教授、纪录片导演等不同 AI 智能体的回复,然后开启新一轮次的提问。

图片

此外,Co-STORM 的相关论文已被 EMNLP 2024 主会议收录。

图片

论文地址:https://www.arxiv.org/pdf/2408.15232

运行原理概览

下图为 Co-STORM 框架。整体而言,Co-STORM 模拟用户、观点引导专家和主持人之间的协作对话。

运行原理如下所示:首先维护动态更新的思维导图(3.2),从而帮助用户跟踪和参与对话(3.3)。 

在 3.4,提示模拟专家根据对话历史来确定对话意图,并生成基于互联网的问题或答案。

在 3.5,提示模拟主持人利用未使用的信息和思维导图生成新问题,从而自动引导对话。

最后,思维导图可用来生成完整的引用报告以作为总结。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值