POJ 1836 Alignment

解决一个有趣的动态规划问题,目标是最小化需要出列的士兵数量,以确保剩余士兵能够直接看到队列的一端。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description

In the army, a platoon is composed by n soldiers. During the morning inspection, the soldiers are aligned in a straight line in front of the captain. The captain is not satisfied with the way his soldiers are aligned; it is true that the soldiers are aligned in order by their code number: 1 , 2 , 3 , … , n , but they are not aligned by their height. The captain asks some soldiers to get out of the line, as the soldiers that remain in the line, without changing their places, but getting closer, to form a new line, where each soldier can see by looking lengthwise the line at least one of the line’s extremity (left or right). A soldier see an extremity if there isn’t any soldiers with a higher or equal height than his height between him and that extremity.

Write a program that, knowing the height of each soldier, determines the minimum number of soldiers which have to get out of line.

Input

On the first line of the input is written the number of the soldiers n. On the second line is written a series of n floating numbers with at most 5 digits precision and separated by a space character. The k-th number from this line represents the height of the soldier who has the code k (1 <= k <= n).

There are some restrictions:
• 2 <= n <= 1000
• the height are floating numbers from the interval [0.5, 2.5]

Output

The only line of output will contain the number of the soldiers who have to get out of the line.

Sample Input

8
1.86 1.86 1.30621 2 1.4 1 1.97 2.2

Sample Output

4

题意:

令到原队列的最少士兵出列后,使得新队列任意一个士兵都能看到左边或者右边的无穷远处。也就是说,严格递增、严格递减和先增后减都符合题意

题解:

很有意思的一个动态规划的思想,先把严格递增需要修改的人数列出,再把严格递减需要修改的人数列出,通过动态规划找出一个人作为最高点使解最优

CODE:

#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std;
int main()
{
    int dp1[1001],dp2[1001];
    double f[1001];
    int n;
    while(scanf("%d",&n)!=EOF)
    {
        for(int i=1; i<=n; i++)
            scanf("%lf",&f[i]);
        for(int i=1; i<=n; i++)
            dp1[i]=dp2[i]=1;
        for(int i=1; i<=n; i++)
            for(int j=1; j<i; j++)
                if(f[i]>f[j])
                    dp1[i]=max(dp1[i],dp1[j]+1);
        for(int i=n; i>=1; i--)
            for(int j=n; j>i; j--)
                if(f[i]>f[j])
                    dp2[i]=max(dp2[i],dp2[j]+1);
        int ans=-1;
        for(int i=1; i<=n; i++)
            for(int j=i+1; j<=n; j++)
                ans=max(ans,dp1[i]+dp2[j]);
        printf("%d\n",n-ans);
    }
    return 0;
}
资源下载链接为: https://pan.quark.cn/s/22ca96b7bd39 在当今的软件开发领域,自动化构建与发布是提升开发效率和项目质量的关键环节。Jenkins Pipeline作为一种强大的自动化工具,能够有效助力Java项目的快速构建、测试及部署。本文将详细介绍如何利用Jenkins Pipeline实现Java项目的自动化构建与发布。 Jenkins Pipeline简介 Jenkins Pipeline是运行在Jenkins上的一套工作流框架,它将原本分散在单个或多个节点上独立运行的任务串联起来,实现复杂流程的编排与可视化。它是Jenkins 2.X的核心特性之一,推动了Jenkins从持续集成(CI)向持续交付(CD)及DevOps的转变。 创建Pipeline项目 要使用Jenkins Pipeline自动化构建发布Java项目,首先需要创建Pipeline项目。具体步骤如下: 登录Jenkins,点击“新建项”,选择“Pipeline”。 输入项目名称和描述,点击“确定”。 在Pipeline脚本中定义项目字典、发版脚本和预发布脚本。 编写Pipeline脚本 Pipeline脚本是Jenkins Pipeline的核心,用于定义自动化构建和发布的流程。以下是一个简单的Pipeline脚本示例: 在上述脚本中,定义了四个阶段:Checkout、Build、Push package和Deploy/Rollback。每个阶段都可以根据实际需求进行配置和调整。 通过Jenkins Pipeline自动化构建发布Java项目,可以显著提升开发效率和项目质量。借助Pipeline,我们能够轻松实现自动化构建、测试和部署,从而提高项目的整体质量和可靠性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值