LeetCode#5.最长回文子串

一、题目描述

给定一个字符串s,找到s中最长的回文子串。你可以假设s的最大长度为1000。

示例1:

输入: “babad”
输出: “bab”
注意: “aba” 也是一个有效答案

示例2:

输入: “cbbd”
输出: “bb”

二、解法一:动态规划

思路:
对于一个字符串而言,如果它是回文串,并且长度大于2,那么将它首尾的两个字母去除之后,它仍然是个回文串。使用dp[i][j]来表示子串s[i…j]是否为回文串,得到状态转移方程:

d p [ i ] [ j ] = ( s [ i ] = = s [ j ]    & &    d p [ i + 1 ] [ j − 1 ] ) dp[i][j]=(s[i]==s[j]\ \ \&\&\ \ dp[i+1][j-1]) dp[i][j]=(s[i]==s[j]  &&  dp[i+1][j1])

边界条件考虑子串的长度为1或2。对于长度为1的子串,它必然是回文串;对于长度为2的子串,若它的两个字母相同,则为回文串。

代码:

class Solution {
public:
    string longestPalindrome(string s) {
        int n = s.size();
        vector<vector<int>> dp(n, vector<int>(n));
        string ans;
        for (int len = 0; len < n; ++len) {
            for (int i = 0; i + len < n; ++i) {
                int j = i + len;
                if (len == 0) {
                    dp[i][j] = 1;
                }
                else if (len == 1) {
                    dp[i][j] = (s[i] == s[j]);
                }
                else {
                    dp[i][j] = (s[i] == s[j] && dp[i + 1][j - 1]);
                }
                if (dp[i][j] && len + 1 > ans.size()) {
                    ans = s.substr(i, len + 1);
                }
            }
        }
        return ans;
    }
};

三、解法二:中心扩散

思路:
回文串一定是关于中心位置对称的。若回文串的长度为奇数,则中心位置是一个字符;若回文串的长度为偶数,则中心位置是位于中间的两个字符的“间隙”。
回文串长度为奇数
回文串长度为偶数
中心扩散法即遍历字符串的每一个字符,以当前字符或者当前字符后的间隙作为中间位置,往两侧扩散,寻找最长的回文子串。

代码:

class Solution {
public:
    int findPalindrome(const string& s, int left, int right)
    {
        int len = 0;
        while (left >= 0 && right < s.size() && s[left] == s[right])
        {
            left--;
            right++;
            len++;
        }
        return len;
    }

    string longestPalindrome(string s) {
        if (s.size() < 2)
            return s;

        int start = 0, end = 0;
        for (int i = 0; i < s.size() - 1; i++)
        {
            int oddLen = findPalindrome(s, i, i);
            int evenLen = findPalindrome(s, i, i + 1);
            if (oddLen * 2 - 1 > end - start)
            {
                start = i - oddLen + 1;
                end = i + oddLen - 1;
            }
            if (evenLen * 2 > end - start)
            {
                start = i - evenLen + 1;
                end = i + evenLen;
            }
        }
        return s.substr(start, end - start + 1);
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值