TOJ 1138. Binomial Showdown

本文介绍了一个计算组合数C(k,n)的程序实现方法,并通过示例输入输出展示了如何避免中间计算过程中可能出现的整数溢出问题。该方法适用于n较大但结果依然可以装入整型变量的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

In how many ways can you choose k elements out of n elements, not taking order into account?
Write a program to compute this number.

Input Specification

The input file will contain one or more test cases.
Each test case consists of one line containing two integers n (n≥1) and k (0≤kn).
Input is terminated by two zeroes for n and k.

Output Specification

For each test case, print one line containing the required number. This number will always fit into an integer, i.e. it will be less than 231.

Warning: Don't underestimate the problem. The result will fit into an integer - but if all intermediate results arising during the computation will also fit into an integer depends on your algorithm. The test cases will go to the limit.

Sample Input

4 2
10 5
49 6
0 0

Sample Output

6
252
13983816
这题很纠结,就是算C(k,n),第一次函数是这样写的sun=sun*(n-i)/i;结果RE……应该是因为乘的过程中大头除小头超了,而sun=sun*(n-m+i)/i;则是小头除小头。
code:
#include <iostream> 
using namespace std;
int main()
{
int n,m,i;
double sun;
while(scanf("%d%d",&n ,&m ) != EOF )
{
if(n==0&&m==0) break;
if(m>n/2) m=n-m;
sun=1;
for(i=1;i<=m;i++) sun=sun*(n-m+i)/i;
printf("%lld/n", (long long)sun );
}
return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值