Codeforces Round #442 (Div. 2) B - Nikita and string

本文介绍了一个编程挑战,目标是在不改变字符顺序的情况下,通过删除部分字符来形成最长的ABA形式的字符串(A代表若干个a,B代表若干个b)。文章提供了一种解决方案,包括计算a和b的前缀和,然后遍历所有可能的子串,找到满足条件的最长子串。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

B. Nikita and string
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

One day Nikita found the string containing letters "a" and "b" only.

Nikita thinks that string is beautiful if it can be cut into 3 strings (possibly empty) without changing the order of the letters, where the 1-st and the 3-rd one contain only letters "a" and the 2-nd contains only letters "b".

Nikita wants to make the string beautiful by removing some (possibly none) of its characters, but without changing their order. What is the maximum length of the string he can get?

Input

The first line contains a non-empty string of length not greater than 5 000 containing only lowercase English letters "a" and "b".

Output

Print a single integer — the maximum possible size of beautiful string Nikita can get.

Examples
input
abba
output
4
input
bab
output
2
Note

It the first sample the string is already beautiful.

In the second sample he needs to delete one of "b" to make it beautiful.

题意 给出一个只包含a,b 的字符串,可以删除任意数量的字符(不可调换位置),使得ABA的形式的字符串最长(A代表若干个a,B代表若干个b)

求出a,b的前缀和,遍历一遍i,j之间b的个数,找出最大长度

#include <cstdio>
#include <cstring>
#include <string>
#include <iostream>
#include <algorithm>
#include <set>
using namespace std;

int main()
{
	char s[5005];
	int a[5005] = {0}, b[5005] = {0};
	scanf("%s", s + 1);
	int l = strlen(s + 1), A = 0, B = 0, sum = 0;
	for (int i = 1; i <= l; i ++) {
		b[i] = s[i] == 'b' ? b[i - 1] + 1 : b[i - 1];
		a[i] = s[i] == 'a' ? a[i - 1] + 1 : a[i - 1];
	}
	for (int i = 1; i <= l; i ++) {
		for (int j = i - 1; j <= l; j ++) {
			if (a[i - 1] + b[j] - b[i - 1] + a[l] - a[j] > sum) {
				sum = a[i - 1] + b[j] - b[i - 1] + a[l] - a[j];
			}
		}
	}
	printf("%d\n", sum);
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值