51nod 1003 阶乘后面0的数量

本文介绍了一种计算任意正整数n的阶乘n!末尾所含零的数量的方法,通过分析阶乘的数学特性,给出了计算公式并提供了C++代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


问题描述
给定参数n(n为正整数),请计算n的阶乘n!末尾所含有“0”的个数。
例如,5!=120,其末尾所含有的“0”的个数为1;10!= 3628800,其末尾所含有的“0”的个数为2;20!= 2432902008176640000,其末尾所含有的“0”的个数为4。

计算公式
这里先给出其计算公式,后面给出推导过程。
令f(x)表示正整数x末尾所含有的“0”的个数,则有:
   当0 < n < 5时,f(n!) = 0;
   当n >= 5时,f(n!) = k + f(k!), 其中 k = n / 5(取整)。

问题分析
显然,对于阶乘这个大数,我们不可能将其结果计算出来,再统计其末尾所含有的“0”的个数。所以必须从其数字特征进行分析。下面我们从因式分解的角度切入分析。

我们先考虑一般的情形。对于任意一个正整数,若对其进行因式分解,那么其末尾的“0”必可以分解为2*5。在这里,每一个“0”必然和一个因子“5”相对应。但请注意,一个数的因式分解中因子“5”不一定对应着一个“0”,因为还需要一个因子“2”,才能实现其一一对应。

我们再回到原先的问题。这里先给出一个结论:
结论1: 对于n的阶乘n!,其因式分解中,如果存在一个因子“5”,那么它必然对应着n!末尾的一个“0”。
下面对这个结论进行证明:
(1)当n < 5时, 结论显然成立。
(2)当n >= 5时,令n!= [5k * 5(k-1) * ... * 10 * 5] * a,其中 n = 5k + r (0 <= r <= 4),a是一个不含因子“5”的整数。
对于序列5k, 5(k-1), ..., 10, 5中每一个数5i(1 <= i <= k),都含有因子“5”,并且在区间(5(i-1),5i)(1 <= i <= k)内存在偶数,也就是说,a中存在一个因子“2”与5i相对应。即,这里的k个因子“5”与n!末尾的k个“0”一一对应。
我们进一步把n!表示为:n!= 5^k * k! * a(公式1),其中5^k表示5的k次方。很容易利用(1)和迭代法,得出结论1。

上面证明了n的阶乘n!末尾的“0”与n!的因式分解中的因子“5”是一一对应的。也就是说,计算n的阶乘n!末尾的“0”的个数,可以转换为计算其因式分解中“5”的个数。

令f(x)表示正整数x末尾所含有的“0”的个数, g(x)表示正整数x的因式分解中因子“5”的个数,则利用上面的的结论1和公式1有:
   f(n!) = g(n!) = g(5^k * k! * a) = k + g(k!) = k + f(k!)
所以,最终的计算公式为:
当0 < n < 5时,f(n!) = 0;
当n >= 5时,f(n!) = k + f(k!), 其中 k = n / 5(取整)。

计算举例
f(5!) = 1 + f(1!) = 1
f(10!) = 2 + f(2!) = 2
f(20!) = 4 + f(4!) = 4
f(100!) = 20 + f(20!) = 20 + 4 + f(4!) = 24
f(1000!) = 200 + f(200!) = 200 + 40 + f(40!) = 240 + 8 + f(8!) = 248 + 1 + f(1) =249

from:http://www.cnblogs.com/wyqx/archive/2012/08/09/2630908.html


#include<bits/stdc++.h>
using namespace std;
int main(){
    int n;
      cin>>n;
    int ans=0;
    while(n){
        ans+=n/5;
        n=n/5;
    }
    cout<<ans<<endl;

    return 0;
}


### 关于51Nod平台上编号为1020的问题详情与解答 #### 问题描述 在51Nod平台上的第1020号问题是关于计算两个大整数相加的结果[^1]。给定两个正整数A和B,长度不超过10^6位,要求编写程序来求解这两个数的和。 #### 输入格式说明 输入数据由多组测试案例组成;每组测试案例占两行,分别表示要相加的大整数A和B。对于每一组测试案例,应当单独输出一行结果,即A+B的值。 #### 解决方案概述 解决此问题的关键在于处理超大数据类型的运算,在大多数编程语言中内置的数据类型无法直接支持如此大规模数值的操作。因此,可以采用字符串的方式来存储这些大整数,并实现逐位相加逻辑,同时考虑进位情况。 下面是一个Python版本的具体实现方法: ```python def add_large_numbers(a: str, b: str) -> str: # Reverse strings to make addition easier from least significant digit a = a[::-1] b = b[::-1] carry = 0 result = [] max_length = max(len(a), len(b)) for i in range(max_length): digit_a = int(a[i]) if i < len(a) else 0 digit_b = int(b[i]) if i < len(b) else 0 total = digit_a + digit_b + carry carry = total // 10 current_digit = total % 10 result.append(str(current_digit)) if carry != 0: result.append(str(carry)) return ''.join(reversed(result)) if __name__ == "__main__": while True: try: num1 = input().strip() num2 = input().strip() print(add_large_numbers(num1, num2)) except EOFError: break ``` 该代码片段定义了一个函数`add_large_numbers`用于接收两个作为参数传入的大整数(形式上为字符串),并返回它们之和同样作为一个字符串。通过反转输入字符串使得最低有效位位于索引位置0处从而简化了按位累加的过程。最后再将得到的结果列表反向拼接成最终答案输出。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值