PKU1001 定长浮点数高精度幂乘

本文介绍了一种解决高精度指数运算问题的方法,通过自定义高精度乘法函数实现任意精度的实数指数运算。文章详细展示了如何处理各种特殊输入情况,如多余的前导和尾随零、无小数点及特殊补零情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

Exponentiation

Description

Problems involving the computation of exact values of very large magnitude and precision are common. For example, the computation of the national debt is a taxing experience for many computer systems.

This problem requires that you write a program to compute the exact value of Rn where R is a real number ( 0.0 < R < 99.999 ) and n is an integer such that 0 < n <= 25.

Input

The input will consist of a set of pairs of values for R and n. The R value will occupy columns 1 through 6, and the n value will be in columns 8 and 9.

Output

The output will consist of one line for each line of input giving the exact value of R^n. Leading zeros should be suppressed in the output. Insignificant trailing zeros must not be printed. Don't print the decimal point if the result is an integer.

Sample Input

95.123 12

0.4321 20

5.1234 15

6.7592  9

98.999 10

1.0100 12

Sample Output

548815620517731830194541.899025343415715973535967221869852721

.00000005148554641076956121994511276767154838481760200726351203835429763013462401

43992025569.928573701266488041146654993318703707511666295476720493953024

29448126.764121021618164430206909037173276672

90429072743629540498.107596019456651774561044010001

1.126825030131969720661201

 

 

这道题的输入数据中的底数要考虑的情况较多,对于高精度运算中多于的 0 要进行过滤,对小数点的处理也要十分注意,具体有一下几种特殊情况:

1、   多余前置 0 01.111

2、   多余后置 0 80.000

3、   无小数点的情况: 100000

4、   特殊情况补 0 0.0001

以上为要注意的情况,代码如下:

 

 

Memory 320K

Time 16MS

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值