Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 6448 | Accepted: 2554 |
Description
On an N × N chessboard with a non-negative number in each grid, Kaka starts his matrix travels withSUM = 0. For each travel, Kaka moves one rook from the left-upper grid to the right-bottom one, taking care that the rook moves only to the right or down. Kaka adds the number toSUM in each grid the rook visited, and replaces it with zero. It is not difficult to know the maximumSUM Kaka can obtain for his first travel. Now Kaka is wondering what is the maximumSUM he can obtain after his Kth travel. Note the SUM is accumulative during theK travels.
Input
The first line contains two integers N and K (1 ≤ N ≤ 50, 0 ≤K ≤ 10) described above. The following N lines represents the matrix. You can assume the numbers in the matrix are no more than 1000.
Output
The maximum SUM Kaka can obtain after his Kth travel.
Sample Input
3 2 1 2 3 0 2 1 1 4 2
Sample Output
15
Source
#include <stdio.h>
#include <string.h>
#include <math.h>
struct num
{
int sta,end,cap,cost,next,pre;
}a[1000000];
int b[50020],Top,sta,end;
int queue[1000000],dis[50020],status[50020];
int pre[50020],INF=0x7ffffff;
int main()
{
void add(int s,int e,int cap,int cost);
int EK();
int i,j,n,m,s,t,w;
int x;
while(scanf("%d %d",&n,&m)!=EOF)
{
t=n*n;
Top=0;
memset(b,-1,sizeof(b));
for(i=1;i<=n;i++)
{
for(j=1;j<=n;j++)
{
scanf("%d",&w);
x=(i-1)*n+j;
add(x,t+x,1,w);
add(x,t+x,m,0);
if(j<=n-1)
{
add(t+x,x+1,m,0);
}
if(i<=n-1)
{
add(t+x,x+n,m,0);
}
}
}
add(0,1,m,0);
add(2*t,2*t+1,m,0);
sta=0; end=2*t+1;
s=EK();
printf("%d\n",s);
}
return 0;
}
void add(int s,int e,int cap,int cost)
{
a[Top].sta=s;
a[Top].end=e;
a[Top].cap=cap;
a[Top].cost=cost;
a[Top].pre=Top+1;
a[Top].next=b[s];
b[s]=Top;
Top++;
a[Top].sta=e;
a[Top].end=s;
a[Top].cap=0;
a[Top].cost=-cost;
a[Top].next=b[e];
a[Top].pre=Top-1;
b[e]=Top;
Top++;
}
int spfa()
{
int i,j,base,top,x,xend;
base=top=0;
memset(status,0,sizeof(status));
for(i=0;i<=end;i++)
{
dis[i]=-INF;
}
queue[top++]=0;
status[0]=1;
dis[0]=0;
while(base<top)
{
x=queue[base++];
status[x]=0;
for(i=b[x]; i!=-1; i=a[i].next)
{
if(a[i].cap)
{
xend=a[i].end;
if(dis[xend]<(dis[x]+a[i].cost))
{
dis[xend]=dis[x]+a[i].cost;
pre[xend]=i;
if(!status[xend])
{
queue[top++]=xend;
status[xend]=1;
}
}
}
}
}
if(dis[end]<=0)
{
return -1;
}else
{
return 1;
}
}
int EK()
{
int i,j,k,t,s=0;
while(1)
{
k=spfa();
if(k==-1)
{
break;
}
for(i=end;i!=0;i=a[j].sta)
{
j=pre[i];
a[j].cap-=1;
t=a[j].pre;
a[t].cap+=1;
s+=a[j].cost;
}
}
return s;
}