时间限制: 10 Sec 内存限制: 128 MB
Problem
Given an even number of distinct planar points, consider coupling all of the points into pairs.
All the possible couplings are to be considered as long as all the given points are coupled to one and only one other point.
When lines are drawn connecting the two points of all the coupled point pairs, some of the drawn lines can be parallel to some others. Your task is to find the maximum number of parallel line pairs considering all the possible couplings of the points.
For the case given in the first sample input with four points, there are three patterns of point couplings as shown in Figure B.1. The numbers of parallel line pairs are 0, 0, and 1, from the left. So the maximum is 1.
Figure B.1. All three possible couplings for Sample Input 1
For the case given in the second sample input with eight points, the points can be coupled as shown in Figure B.2. With such a point pairing, all four lines are parallel to one another. In other words, the six line pairs (L1, L2), (L1, L3), (L1, L4), (L2, L3), (L2, L4) and (L3, L4) are parallel. So the maximum number of parallel line pairs, in this case, is 6.
输入
The input consists of a single test case of the following format.
m
x1 y1
.
.
.
xm ym
Figure B.2. Maximizing the number of parallel line pairs for Sample Input 2
The first line contains an even integer m, which is the number of points (2 ≤ m ≤ 16). Each of the following m lines gives the coordinates of a point. Integers xi and yi (−1000 ≤ xi ≤ 1000,−1000 ≤ yi ≤ 1000) in the i-th line of them give the x- and y-coordinates, respectively, of the i-th point.
The positions of points are all different, that is, xi ≠ xj or yi ≠ yj holds for all i ≠ j. Furthermore, No three points lie on a single line.
输出
Output the maximum possible number of parallel line pairs stated above, in one line.
样例输入
4
0 0
1 1
0 2
2 4
样例输出
1
Soluton
枚举所有可能方案,不重复的情况下,时间复杂度是15*13*11*…*1=
(n-1)!!
#include <bits/stdc++.h>
#define pii pair<int,int>
using namespace std;
int n,ans;
int x[18],y[18];
bool vis[18];
map<pii,int> Map;
int biao[121];
int ha[18][18];
int cn,mx;
void dfs(int s,int res) {
if (s==n/2) {
cn++;
//printf("\n");
ans=max(ans,res);
return;
}
if (ans==mx) return;
int p,q;
for (p=0; p<n-1; ++p)
if (!vis[p]) {
vis[p]=true;
break;
}
int tmp;
for (q=p+1; q<n; ++q)
if (!vis[q]) {
tmp=res-biao[ha[p][q]]*(biao[ha[p][q]]-1)/2;
biao[ha[p][q]]++;
tmp+=biao[ha[p][q]]*(biao[ha[p][q]]-1)/2;
//printf("(%d,%d) ",p,q);
vis[q]=true;
dfs(s+1,tmp);
biao[ha[p][q]]--;
vis[q]=false;
}
vis[p]=false;
}
int main() {
scanf("%d",&n);
for (int i=0; i<n; ++i)
scanf("%d%d",&x[i],&y[i]);
int tot=0;
for (int i=0; i<n-1; ++i) {
for (int p=i+1; p<n; ++p) {
int ux,uy,t;
ux=x[i]-x[p];
uy=y[i]-y[p];
if (ux==0) {
if (!Map[pii(0,1)]) Map[pii(0,1)]=++tot;
} else if (uy==0) {
if (!Map[pii(1,0)]) Map[pii(1,0)]=++tot;
} else {
if (uy<0) {
ux*=-1;
uy*=-1;
}
t=__gcd(abs(ux),abs(uy));
ux/=t;
uy/=t;
if (!Map[pii(ux,uy)]) Map[pii(ux,uy)]=++tot;
}
}
}
for (int i=0; i<n-1; ++i) {
for (int p=i+1; p<n; ++p) {
int ux,uy,t;
ux=x[i]-x[p];
uy=y[i]-y[p];
if (ux==0) {
ha[i][p]=Map[pii(0,1)];
} else if (uy==0) {
ha[i][p]=Map[pii(1,0)];
} else {
if (uy<0) {
ux*=-1;
uy*=-1;
}
t=__gcd(abs(ux),abs(uy));
ux/=t;
uy/=t;
ha[i][p]=Map[pii(ux,uy)];
}
}
}
mx=n*(n-1)/2;
vis[0]=true;
for (int i=1; i<n; ++i) {
vis[i]=true;
biao[ha[0][i]]++;
//printf("(%d,%d) ",0,i);
dfs(1,0);
vis[i]=false;
biao[ha[0][i]]--;
}
printf("%d\n",ans);
//printf("cnt=%d\n",cn);
return 0;
}
/**************************************************************
Problem: 8839
User: St085
Language: C++
Result: 正确
Time:160 ms
Memory:1708 kb
****************************************************************/
平面点配对求最大平行线段对数
博客围绕平面点配对问题展开,给定偶数个不同平面点,需将其两两配对。通过连线,要找出所有配对方案中平行线段对的最大数量。输入为点的数量和坐标,输出最大平行线段对数,解题采用枚举所有可能方案,时间复杂度为(n - 1)!!。
604

被折叠的 条评论
为什么被折叠?



