参考:https://blog.youkuaiyun.com/Lucifer_zzq/article/details/76675239
1、安装ubuntu
建议安装美版,也就是所有的语言选择English.
我这个比较麻烦的一点是,每次重装系统都会出现fatal error , 但并不知道哪里出错了,每次只能先格式化(不能快速格式化,FAT模式)U盘,然后安装才能安装成功。
还有一个原因就是English环境制作没有成功
一键制作ubuntu启动盘
教程在这
建议先去cuda下载网站看一下,cuda支持的系统版本(我这时候:18.04是不支持cuda的,下面再说cuda安装细节)
开始装了3遍,全部失败,
1.msi 台式机进入bois (开机时点击del)
2.将启动优先设置为u盘启动
3.F10保存,重启
4.进入ubuntu安装界面
5.然后就是按照自己的选择进行next(我当时是抹掉了所有数据,不过都是备份好的)
6.大功告成
注意:安装的时候一定添加sudo,因为我配的是实验室电脑,如果是多个用户,都需要用到这个环境那么必须root安装
2、gcc安装,下一步显卡必备
注意:cuda9.0 只支持7以下版本,所以需要降级,在此我们采用5.5稳定版本。
sudo apt-get install gcc-5 gcc-5-multilib g++-5 g++-5-multilib
# 查看版本会发现是7.2
gcc --version
# 修改优先级,数字越大,优先级别越高,将默认改为5.5
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-5 100
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-7 50
sudo update-alternatives --config gcc
# 按Enter退出
sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-5 50
sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-7 40
sudo update-alternatives --config g++
# 按Enter退出
# 再次查看版本信息,会发现已经是5.5版本了
gcc --version
安装依赖库
sudo apt-get install g++ freeglut3-dev build-essential libx11-dev libxmu-dev libxi-dev libglu1-mesa
3、安装显卡
不需要下载驱动。
找到“软件与更新”,找到‘附加驱动’nvidia显卡(箭头所指),然后自动相当于网上说的将另一个拉为黑名单。
apply之后,重启之后就能进终端,输入
nvidia-smi
可以看到显示gpu的各种信息,也说明显卡驱动没有问题了。
4、兼容问题
下面就是 cuda+cudnn+tf 的安装了,这时候就需要看清楚三者的对应关系,然后去下载相应的文件!
可参考这个链接:Tensorflow-GPU版本需要的CUDA版本以及Cudnn的对应关系
5、安装CUDA
cuda下载网站
安装稳定的9.0版本
sudo sh cuda.run
接受协议.注意是否安装NVIDIA Accelerated Graphics Driver,选择No。
Do you accept the previously read EULA?
accept/decline/quit: accept
You are attempting to install on an unsupported configuration. Do you wish to continue?
(y)es/(n)o [ default is no ]: y
Install NVIDIA Accelerated Graphics Driver for Linux-x86_64 387.26?
(y)es/(n)o/(q)uit: n
Install the CUDA 9.1 Toolkit?
(y)es/(n)o/(q)uit: y
Enter Toolkit Location
[ default is /usr/local/cuda-9.1 ]:
Do you want to install a symbolic link at /usr/local/cuda?
(y)es/(n)o/(q)uit: y
Install the CUDA 9.1 Samples?
(y)es/(n)o/(q)uit: y
Enter CUDA Samples Location
[ default is /home/fc ]:
然后写入环境变量,就像windows下的环境、
下面的位置是安装的时候默认的位置
echo 'export PATH=/usr/local/cuda-9.0/bin:$PATH' >> ~/.bashrc
echo 'export LD_LIBRARY_PATH=/usr/local/cuda-9.0/lib64:$LD_LIBRARY_PATH' >> ~/.bashrc
source ~/.bashrc
查看安装成功的cuda版本
cat /usr/local/cuda/version.txt
6、安装CUDNN
cudnn下载网站,需要注册nvidia账号,然后才能下载。
注意版本的选择
因为cuda下载的9.0的,所以这里也直接下载9.0对应的版本7.0。
点击之后,会发现还有系统版本的区别
我是ubuntu 16.10(或者17.10) 选择第一个
tar -xzvf cudnn-9.0-linux-x64-v7.1.tgz
sudo cp cuda/include/cudnn.h /usr/local/cuda/include
sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64
sudo chmod a+r /usr/local/cuda/include/cudnn.h
sudo chmod a+r /usr/local/cuda/lib64/libcudnn*
查看cudnn版本
cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2
7、安装Annaconda(可选)
sudo bash Anaconda2-4.2.0-Linux-x86_64.sh
source ~/.bashrc
检测安装是否成功,输入python,出现以下内容安装成功
Python 3.6.4 |Anaconda, Inc.| (default, Jan 16 2018, 18:10:19) [GCC 7.2.0] on linux
Type “help”, “copyright”, “credits” or “license” for more information.
8、安装tensorflow-gpu
anacanda安装的是默认的1.0.1版本,但是明显过时了,所以手动升级
选择适合cuda的版本,下载之后
sudo pip install tensorflow-gpu.whl
然后检测是否安装成功
python
>>import tensorflow as tf
>>tf.__version__
输出你安装的版本即成功