【pytorch】FID讲解以及pytorch实现

什么是FID

FID(Fréchet Inception Distance)是一种用于评估生成模型和真实数据分布之间差异的指标。它是由Martin Heusel等人在2017年提出的,是目前广泛使用的评估指标之一。
FID是通过计算两个分布之间的Fréchet距离来衡量生成模型和真实数据分布之间的差异。Fréchet距离是一种度量两个分布之间距离的方法,它考虑到了两个分布的均值和协方差矩阵,可以更好地描述两个分布之间的差异。
在计算FID时,首先从真实数据分布和生成模型中分别抽取一组样本,然后使用预训练的Inception网络从这些样本中提取特征向量。接下来,计算两个分布的均值和协方差矩阵,并计算它们之间的Fréchet距离,得到FID值。FID值越小,表示生成模型生成的图像越接近于真实数据分布。
FID作为一种评估指标,被广泛用于生成模型的训练和评估中。它可以帮助我们更准确地评估生成模型的质量,并选择更好的生成模型。同时,FID也是一种客观的评估指标,可以避免人为主观因素对评估结果的影响。

公式

在这里插入图片描述

FID^2 = ||\mu_1 - \mu_2||^2 + Tr(\Sigma_1 + \Sigma_2 - 2(\Sigma_1\Sigma_2)^{1/2})$
其中, μ 1 \mu_1 μ1 μ 2 \mu_2 μ2

评论 52
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值