HashMap实现原理

1. HashMap的数据结构

数据结构中有数组和链表来实现对数据的存储,但这两者基本上是两个极端。

      数组

数组存储区间是连续的,占用内存严重,故空间复杂的很大。但数组的二分查找时间复杂度小,为O(1);数组的特点是:寻址容易,插入和删除困难

链表

链表存储区间离散,占用内存比较宽松,故空间复杂度很小,但时间复杂度很大,达O(N)。链表的特点是:寻址困难,插入和删除容易。

哈希表

那么我们能不能综合两者的特性,做出一种寻址容易,插入删除也容易的数据结构?答案是肯定的,这就是我们要提起的哈希表。哈希表((Hash table)既满足了数据的查找方便,同时不占用太多的内容空间,使用也十分方便。

  哈希表有多种不同的实现方法,我接下来解释的是最常用的一种方法—— 拉链法,我们可以理解为“链表的数组” ,如图:

 

  从上图我们可以发现哈希表是由数组+链表组成的,一个长度为16的数组中,每个元素存储的是一个链表的头结点。那么这些元素是按照什么样的规则存储到数组中呢。一般情况是通过hash(key)&(leng-1)获得,也就是元素的key的哈希值和(数组长度-1)进行与操作 。比如上述哈希表中,12&15=12,28&15=12,108&15=12,140&15=12。所以12、28、108以及140都存储在数组下标为12的位置。

下面这些的代码还是以hash%length来确定数组位置,但是在jdk8里已经是用hash(key)&(length-1)来确定位置,因为这种计算效率更高

HashMap基本结构

static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;      // HashMap初始容量大小(16) 
static final int MAXIMUM_CAPACITY = 1 << 30;               // HashMap最大容量
transient int size;                                                           // The number of key-value mappings contained in this map

static final float DEFAULT_LOAD_FACTOR = 0.75f;          // 负载因子

HashMap的容量size乘以负载因子[默认0.75] = threshold;  // threshold即为开始扩容的临界值

transient Entry<K,V>[] table = (Entry<K,V>[]) EMPTY_TABLE;    // HashMap的基本构成Entry数组

Entry基本构成
static class Entry<K,V> implements Map.Entry<K,V> {  
        final K key;  
        V value;  
        final int hash;  
        Entry<K,V> next;  
    ..........  

  HashMap其实也是一个线性的数组实现的,所以可以理解为其存储数据的容器就是一个线性数组。这可能让我们很不解,一个线性的数组怎么实现按键值对来存取数据呢?这里HashMap有做一些处理。

  首先HashMap里面实现一个静态内部类Entry,其重要的属性有 key , value, next,从属性key,value我们就能很明显的看出来Entry就是HashMap键值对实现的一个基础bean,我们上面说到HashMap的基础就是一个线性数组,这个数组就是Entry[],Map里面的内容都保存在Entry[]里面。

    /**

     * The table, resized as necessary. Length MUST Always be a power of two.

     */

    transient Entry[] table;

2. HashMap的存取实现

     既然是线性数组,为什么能随机存取?这里HashMap用了一个小算法,大致是这样实现:

// 存储时:
int hash = key.hashCode(); // 这个hashCode方法这里不详述,只要理解每个key的hash是一个固定的int值
int index = hash % Entry[].length;
Entry[index] = value;

// 取值时:
int hash = key.hashCode();
int index = hash % Entry[].length;
return Entry[index];

 

1)put

 

疑问:如果两个key通过hash%Entry[].length得到的index相同,会不会有覆盖的危险?

  这里HashMap里面用到链式数据结构的一个概念。上面我们提到过Entry类里面有一个next属性,作用是指向下一个Entry。打个比方, 第一个键值对A进来,通过计算其key的hash得到的index=0,记做:Entry[0] = A。一会后又进来一个键值对B,通过计算其index也等于0,现在怎么办?HashMap会这样做:B.next = A,Entry[0] = B,如果又进来C,index也等于0,那么C.next = B,Entry[0] = C;这样我们发现index=0的地方其实存取了A,B,C三个键值对,他们通过next这个属性链接在一起。所以疑问不用担心。也就是说数组中存储的是最后插入的元素。到这里为止,HashMap的大致实现,我们应该已经清楚了。

 public V put(K key, V value) {

        if (key == null)

            return putForNullKey(value); //null总是放在数组的第一个链表中

        int hash = hash(key.hashCode());

        int i = indexFor(hash, table.length);

        //遍历链表

        for (Entry<K,V> e = table[i]; e != null; e = e.next) {

            Object k;

            //如果key在链表中已存在,则替换为新value

            if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {

                V oldValue = e.value;

                e.value = value;

                e.recordAccess(this);

                return oldValue;

            }

        }

        modCount++;

        addEntry(hash, key, value, i);

        return null;

    }

 

void addEntry(int hash, K key, V value, int bucketIndex) {

    Entry<K,V> e = table[bucketIndex];

    table[bucketIndex] = new Entry<K,V>(hash, key, value, e); //参数e, 是Entry.next

    //如果size超过threshold,则扩充table大小。再散列

    if (size++ >= threshold)

            resize(2 * table.length);

}

  当然HashMap里面也包含一些优化方面的实现,这里也说一下。比如:Entry[]的长度一定后,随着map里面数据的越来越长,这样同一个index的链就会很长,会不会影响性能?HashMap里面设置一个因子,随着map的size越来越大,Entry[]会以一定的规则加长长度

因为新进的键值对要被分到数组的哪个元素去的算法是 hashValue % 数组长度,所以当Entry[]加长长度时,新进的键值对自然被分到数组新的元素上去,这样就避免了数组元素内的链表过长。

 

2)get

 public V get(Object key) {

        if (key == null)

            return getForNullKey();

        int hash = hash(key.hashCode());

        //先定位到数组元素,再遍历该元素处的链表

        for (Entry<K,V> e = table[indexFor(hash, table.length)];

             e != null;

             e = e.next) {

            Object k;

            if (e.hash == hash && ((k = e.key) == key || key.equals(k)))

                return e.value;

        }

        return null;

}

 

3)null key的存取

null key总是存放在Entry[]数组的第一个元素。

   private V putForNullKey(V value) {

        for (Entry<K,V> e = table[0]; e != null; e = e.next) {

            if (e.key == null) {

                V oldValue = e.value;

                e.value = value;

                e.recordAccess(this);

                return oldValue;

            }

        }

        modCount++;

        addEntry(0, null, value, 0);

        return null;

    }

 

    private V getForNullKey() {

        for (Entry<K,V> e = table[0]; e != null; e = e.next) {

            if (e.key == null)

                return e.value;

        }

        return null;

    }

 

 

 

 

4)确定数组index:hashcode % table.length取模

HashMap存取时,都需要计算当前key应该对应Entry[]数组哪个元素,即计算数组下标;算法如下:

   /**

     * Returns index for hash code h.

     */

    static int indexFor(int h, int length) {

        return h & (length-1);

    }

 

按位取并,作用上相当于取模mod或者取余%。

这意味着数组下标相同,并不表示hashCode相同。

 

5)table初始大小

 

  public HashMap(int initialCapacity, float loadFactor) {

        .....        // Find a power of 2 >= initialCapacity

        int capacity = 1;

        while (capacity < initialCapacity)

            capacity <<= 1;

        this.loadFactor = loadFactor;

        threshold = (int)(capacity * loadFactor);

        table = new Entry[capacity];

        init();

    }

 

注意table初始大小并不是构造函数中的initialCapacity!!

而是 >= initialCapacity的2的n次幂!!!!

————为什么这么设计呢?——

3. 解决hash冲突的办法

  1. 开放定址法(线性探测再散列,二次探测再散列,伪随机探测再散列)
  2. 再哈希法
  3. 链地址法
  4. 建立一个公共溢出区

Java中hashmap的解决办法就是采用的链地址法。

 

4. 再散列rehash过程

当哈希表的容量超过默认容量时,必须调整table的大小。当容量已经达到最大可能值时,那么该方法就将容量调整到Integer.MAX_VALUE返回,这时,需要创建一张新表,将原表的映射到新表中。

    void resize(int newCapacity) {

        Entry[] oldTable = table;

        int oldCapacity = oldTable.length;

        if (oldCapacity == MAXIMUM_CAPACITY) {

            threshold = Integer.MAX_VALUE;

            return;

        }

        Entry[] newTable = new Entry[newCapacity];

        transfer(newTable);

        table = newTable;

        threshold = (int)(newCapacity * loadFactor);

    }

    void transfer(Entry[] newTable) {

        Entry[] src = table;

        int newCapacity = newTable.length;

        for (int j = 0; j < src.length; j++) {

            // e是原表数组某个元素的链表的第一个节点

            Entry<K,V> e = src[j];

            if (e != null) {

                src[j] = null;

               //将原表的数据重新映射到新表中,循环链表,把链表中所有元素都拿出来重新计算,放进新的数组中

                do {

                    Entry<K,V> next = e.next;

                                  //根据hash值和新表长度重新计算index

                    int i = indexFor(e.hash, newCapacity);

                   //将链表放进新表这个index处

                    e.next = newTable[i];

                    newTable[i] = e;

                    e = next;

 

                } while (e != null);

            }

        }

    }

 

拉链法主要就是在发生Hash冲突时,将相同hash值的放进同一个链表里,但这样有一个缺点,就是当遇到最坏的情况,所有的元素的hash都冲突,这时所有的元素都会放在一个链表里,这时查找元素的复杂度就变成O(n) JDK8对此用了平衡树的方式进行了优化,复杂度变成O(logN)

 

资源下载链接为: https://pan.quark.cn/s/22ca96b7bd39 在 IT 领域,文档格式转换是常见需求,尤其在处理多种文件类型时。本文将聚焦于利用 Java 技术栈,尤其是 Apache POI 和 iTextPDF 库,实现 doc、xls(涵盖 Excel 2003 及 Excel 2007+)以及 txt、图片等格式文件向 PDF 的转换,并实现在线浏览功能。 先从 Apache POI 说起,它是一个强大的 Java 库,专注于处理 Microsoft Office 格式文件,比如 doc 和 xls。Apache POI 提供了 HSSF 和 XSSF 两个 API,其中 HSSF 用于读写老版本的 BIFF8 格式(Excel 97-2003),XSSF 则针对新的 XML 格式(Excel 2007+)。这两个 API 均具备读取和写入工作表、单元格、公式、样式等功能。读取 Excel 文件时,可通过创建 HSSFWorkbook 或 XSSFWorkbook 对象来打开相应格式的文件,进而遍历工作簿中的每个 Sheet,获取行和列数据。写入 Excel 文件时,创建新的 Workbook 对象,添加 Sheet、Row 和 Cell,即可构建新 Excel 文件。 再看 iTextPDF,它是一个用于生成和修改 PDF 文档的 Java 库,拥有丰富的 API。创建 PDF 文档时,借助 Document 对象,可定义页面尺寸、边距等属性来定制 PDF 外观。添加内容方面,可使用 Paragraph、List、Table 等元素将文本、列表和表格加入 PDF,图片可通过 Image 类加载插入。iTextPDF 支持多种字体和样式,可设置文本颜色、大小、样式等。此外,iTextPDF 的 TextRenderer 类能将 HTML、
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值