【大数据】小红书MCN机构数据可视化分析系统 计算机项目 Hadoop+Spark环境配置 数据科学与大数据技术 附源码+文档+讲解

前言

💖💖作者:计算机程序员小杨
💙💙个人简介:我是一名计算机相关专业的从业者,擅长Java、微信小程序、Python、Golang、安卓Android等多个IT方向。会做一些项目定制化开发、代码讲解、答辩教学、文档编写、也懂一些降重方面的技巧。热爱技术,喜欢钻研新工具和框架,也乐于通过代码解决实际问题,大家有技术代码这一块的问题可以问我!
💛💛想说的话:感谢大家的关注与支持!
💕💕文末获取源码联系 计算机程序员小杨
💜💜
网站实战项目
安卓/小程序实战项目
大数据实战项目
深度学习实战项目
计算机毕业设计选题
💜💜

一.开发工具简介

大数据框架:Hadoop+Spark(本次没用Hive,支持定制)
开发语言:Python+Java(两个版本都支持)
后端框架:Django+Spring Boot(Spring+SpringMVC+Mybatis)(两个版本都支持)
前端:Vue+ElementUI+Echarts+HTML+CSS+JavaScript+jQuery
详细技术点:Hadoop、HDFS、Spark、Spark SQL、Pandas、NumPy
数据库:MySQL

二.系统内容简介

《小红书MCN机构数据可视化分析系统》是一个基于大数据技术的综合性分析平台,专门针对小红书平台上的MCN机构运营数据进行深度挖掘和可视化呈现。系统采用Hadoop+Spark大数据框架作为核心数据处理引擎,结合Python语言的强大数据分析能力,构建了完整的数据处理链路。后端基于Django框架提供稳定的API服务,前端运用Vue+ElementUI+Echarts技术栈打造直观友好的用户界面。系统通过HDFS分布式存储海量MCN机构数据,利用Spark SQL进行高效的数据查询和分析,结合Pandas、NumPy等科学计算库完成复杂的统计分析任务。平台实现了内容领域分析、地理空间分布分析、机构运营效率分析、机构规模实力分析等核心功能模块,并通过可视化大屏实时展示分析结果,为MCN机构的战略决策和运营优化提供了数据支撑和洞察视角。

三.系统功能演示

【大数据】小红书MCN机构数据可视化分析系统 计算机项目 Hadoop+Spark环境配置 数据科学与大数据技术 附源码+文档+讲解

四.系统界面展示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

五.系统源码展示


from pyspark.sql import SparkSession
from pyspark.sql.functions import col, count, avg, sum, desc, asc
from django.http import JsonResponse
from django.views.decorators.csrf import csrf_exempt
import pandas as pd
import numpy as np
import json

spark = SparkSession.builder.appName("XiaohongshuMCNAnalysis").config("spark.sql.adaptive.enabled", "true").config("spark.sql.adaptive.coalescePartitions.enabled", "true").getOrCreate()

def content_domain_analysis(request):
    content_df = spark.read.format("jdbc").option("url", "jdbc:mysql://localhost:3306/mcn_db").option("dbtable", "content_posts").option("user", "root").option("password", "password").load()
    mcn_df = spark.read.format("jdbc").option("url", "jdbc:mysql://localhost:3306/mcn_db").option("dbtable", "mcn_institutions").option("user", "root").option("password", "password").load()
    creator_df = spark.read.format("jdbc").option("url", "jdbc:mysql://localhost:3306/mcn_db").option("dbtable", "content_creators").option("user", "root").option("password", "password").load()
    joined_df = content_df.join(creator_df, "creator_id").join(mcn_df, "mcn_id")
    domain_stats = joined_df.groupBy("mcn_name", "content_domain").agg(count("post_id").alias("post_count"), avg("like_count").alias("avg_likes"), avg("comment_count").alias("avg_comments"), avg("share_count").alias("avg_shares"), sum("view_count").alias("total_views"))
    domain_performance = domain_stats.withColumn("engagement_rate", (col("avg_likes") + col("avg_comments") + col("avg_shares")) / col("total_views") * 100)
    top_domains = domain_performance.groupBy("content_domain").agg(avg("engagement_rate").alias("domain_avg_engagement"), count("mcn_name").alias("mcn_count"), sum("post_count").alias("total_posts")).orderBy(desc("domain_avg_engagement"))
    mcn_domain_ranking = domain_performance.withColumn("domain_score", col("engagement_rate") * 0.4 + col("post_count") * 0.3 + col("total_views") * 0.3).orderBy(desc("domain_score"))
    content_trend_analysis = joined_df.filter(col("post_date") >= "2024-01-01").groupBy("content_domain", "post_month").agg(count("post_id").alias("monthly_posts"), avg("like_count").alias("monthly_avg_likes")).orderBy("content_domain", "post_month")
    cross_domain_creators = creator_df.join(content_df, "creator_id").groupBy("creator_id", "mcn_id").agg(count("content_domain").alias("domain_count")).filter(col("domain_count") > 1)
    domain_competition_index = domain_stats.groupBy("content_domain").agg(count("mcn_name").alias("competing_mcns"), avg("engagement_rate").alias("avg_domain_engagement")).withColumn("competition_intensity", col("competing_mcns") / col("avg_domain_engagement"))
    result_data = {
        "top_domains": top_domains.collect(),
        "mcn_rankings": mcn_domain_ranking.collect(),
        "trend_analysis": content_trend_analysis.collect(),
        "cross_domain_stats": cross_domain_creators.count(),
        "competition_metrics": domain_competition_index.collect()
    }
    return JsonResponse(result_data, safe=False)

def geographic_distribution_analysis(request):
    creator_location_df = spark.read.format("jdbc").option("url", "jdbc:mysql://localhost:3306/mcn_db").option("dbtable", "creator_locations").option("user", "root").option("password", "password").load()
    mcn_df = spark.read.format("jdbc").option("url", "jdbc:mysql://localhost:3306/mcn_db").option("dbtable", "mcn_institutions").option("user", "root").option("password", "password").load()
    content_df = spark.read.format("jdbc").option("url", "jdbc:mysql://localhost:3306/mcn_db").option("dbtable", "content_posts").option("user", "root").option("password", "password").load()
    geo_joined_df = creator_location_df.join(mcn_df, "mcn_id").join(content_df, "creator_id")
    province_distribution = geo_joined_df.groupBy("province", "mcn_name").agg(count("creator_id").alias("creator_count"), avg("follower_count").alias("avg_followers"), sum("total_likes").alias("province_total_likes"))
    city_tier_analysis = geo_joined_df.groupBy("city_tier", "mcn_name").agg(count("creator_id").alias("tier_creator_count"), avg("engagement_rate").alias("tier_avg_engagement"), sum("monthly_income").alias("tier_total_income"))
    regional_performance = province_distribution.withColumn("performance_index", col("avg_followers") * 0.3 + col("province_total_likes") * 0.4 + col("creator_count") * 0.3).orderBy(desc("performance_index"))
    geographic_diversity = geo_joined_df.groupBy("mcn_name").agg(count("province").alias("province_coverage"), count("city_tier").alias("tier_coverage")).withColumn("diversity_score", col("province_coverage") * col("tier_coverage"))
    migration_patterns = geo_joined_df.filter(col("location_change_date").isNotNull()).groupBy("from_province", "to_province").agg(count("creator_id").alias("migration_count")).orderBy(desc("migration_count"))
    market_penetration = province_distribution.groupBy("province").agg(count("mcn_name").alias("mcn_presence"), sum("creator_count").alias("total_creators_in_province")).withColumn("market_saturation", col("mcn_presence") / col("total_creators_in_province"))
    revenue_by_region = geo_joined_df.groupBy("province", "city_tier").agg(sum("monthly_revenue").alias("regional_revenue"), avg("cost_per_acquisition").alias("avg_cpa")).orderBy(desc("regional_revenue"))
    geographic_clustering = geo_joined_df.groupBy("latitude_range", "longitude_range").agg(count("creator_id").alias("cluster_size"), avg("content_quality_score").alias("cluster_quality"))
    seasonal_geographic_trends = geo_joined_df.filter(col("post_date") >= "2024-01-01").groupBy("province", "season").agg(avg("engagement_rate").alias("seasonal_engagement"), count("post_id").alias("seasonal_posts"))
    cross_regional_collaboration = geo_joined_df.join(geo_joined_df.alias("df2"), col("collaboration_id") == col("df2.collaboration_id")).filter(col("province") != col("df2.province")).groupBy("province", "df2.province").agg(count("collaboration_id").alias("cross_regional_projects"))
    result_data = {
        "province_stats": province_distribution.collect(),
        "city_tier_analysis": city_tier_analysis.collect(),
        "performance_rankings": regional_performance.collect(),
        "diversity_metrics": geographic_diversity.collect(),
        "migration_data": migration_patterns.collect(),
        "market_analysis": market_penetration.collect(),
        "revenue_distribution": revenue_by_region.collect()
    }
    return JsonResponse(result_data, safe=False)

def operational_efficiency_analysis(request):
    mcn_operations_df = spark.read.format("jdbc").option("url", "jdbc:mysql://localhost:3306/mcn_db").option("dbtable", "mcn_operations").option("user", "root").option("password", "password").load()
    creator_performance_df = spark.read.format("jdbc").option("url", "jdbc:mysql://localhost:3306/mcn_db").option("dbtable", "creator_performance").option("user", "root").option("password", "password").load()
    campaign_df = spark.read.format("jdbc").option("url", "jdbc:mysql://localhost:3306/mcn_db").option("dbtable", "marketing_campaigns").option("user", "root").option("password", "password").load()
    efficiency_joined_df = mcn_operations_df.join(creator_performance_df, "mcn_id").join(campaign_df, "mcn_id")
    resource_utilization = efficiency_joined_df.groupBy("mcn_name").agg(sum("total_investment").alias("total_invested"), sum("revenue_generated").alias("total_revenue"), count("active_creators").alias("creator_count"), avg("content_production_rate").alias("avg_production_rate"))
    roi_analysis = resource_utilization.withColumn("roi_percentage", (col("total_revenue") - col("total_invested")) / col("total_invested") * 100).withColumn("revenue_per_creator", col("total_revenue") / col("creator_count"))
    operational_metrics = efficiency_joined_df.groupBy("mcn_name").agg(avg("campaign_completion_time").alias("avg_completion_time"), avg("client_satisfaction_score").alias("avg_satisfaction"), count("successful_campaigns").alias("success_count"), count("total_campaigns").alias("total_campaigns"))
    efficiency_score = operational_metrics.withColumn("success_rate", col("success_count") / col("total_campaigns") * 100).withColumn("efficiency_index", col("success_rate") * 0.4 + col("avg_satisfaction") * 0.3 + (100 / col("avg_completion_time")) * 0.3)
    cost_effectiveness = efficiency_joined_df.groupBy("mcn_name").agg(sum("operational_costs").alias("total_costs"), sum("marketing_spend").alias("marketing_costs"), avg("cost_per_acquisition").alias("avg_cpa"), avg("lifetime_value").alias("avg_ltv"))
    profit_margins = cost_effectiveness.withColumn("profit_margin", (col("total_revenue") - col("total_costs")) / col("total_revenue") * 100).withColumn("ltv_cpa_ratio", col("avg_ltv") / col("avg_cpa"))
    productivity_trends = efficiency_joined_df.filter(col("operation_date") >= "2024-01-01").groupBy("mcn_name", "operation_month").agg(avg("daily_content_output").alias("monthly_output"), avg("team_productivity_score").alias("monthly_productivity"))
    benchmark_comparison = efficiency_score.withColumn("industry_rank", row_number().over(Window.orderBy(desc("efficiency_index")))).withColumn("percentile_rank", percent_rank().over(Window.orderBy("efficiency_index")))
    automation_impact = efficiency_joined_df.groupBy("mcn_name", "automation_level").agg(avg("processing_time").alias("avg_processing_time"), avg("error_rate").alias("avg_error_rate"), sum("cost_savings").alias("automation_savings"))
    scalability_metrics = efficiency_joined_df.groupBy("mcn_name").agg(max("peak_capacity").alias("max_capacity"), avg("current_utilization").alias("avg_utilization")).withColumn("scalability_potential", col("max_capacity") - col("avg_utilization"))
    result_data = {
        "roi_metrics": roi_analysis.collect(),
        "efficiency_scores": efficiency_score.collect(),
        "cost_analysis": profit_margins.collect(),
        "productivity_data": productivity_trends.collect(),
        "industry_benchmarks": benchmark_comparison.collect(),
        "automation_metrics": automation_impact.collect(),
        "scalability_data": scalability_metrics.collect()
    }
    return JsonResponse(result_data, safe=False)

六.系统文档展示

在这里插入图片描述

结束

💕💕文末获取源码联系 计算机程序员小杨

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值