CoAtNet实战:使用CoAtNet对植物幼苗进行分类(pytorch)

│ └─coatnet.py

└─train.py

└─test.py

数据集

==============================================================

数据集选用植物幼苗分类,总共12类。数据集连接如下:

链接:https://pan.baidu.com/s/1TOLSNj9JE4-MFhU0Yv8TNQ

提取码:syng

在工程的根目录新建data文件夹,获取数据集后,将trian和test解压放到data文件夹下面,如下图:

img

安装库,并导入需要的库

======================================================================

安装完成后,导入到项目中。

import torch.optim as optim

import torch

import torch.nn as nn

import torch.nn.parallel

import torch.utils.data

import torch.utils.data.distributed

import torchvision.transforms as transforms

from dataset.dataset import SeedlingData

from torch.autograd import Variable

from models.coatnet import coatnet_0

设置全局参数

=================================================================

设置使用GPU,设置学习率、BatchSize、epoch等参数

设置全局参数

modellr = 1e-4

BATCH_SIZE = 16

EPOCHS = 50

DEVICE = torch.device(‘cuda’ if torch.cuda.is_available() else ‘cpu’)

数据预处理

================================================================

数据处理比较简单,没有做复杂的尝试,有兴趣的可以加入一些处理。

数据预处理

transform = transforms.Compose([

transforms.Resize((224, 224)),

transforms.ToTensor(),

transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])

])

transform_test = transforms.Compose([

transforms.Resize((224, 224)),

transforms.ToTensor(),

transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])

])

数据读取

===============================================================

然后我们在dataset文件夹下面新建 init.py和dataset.py,在mydatasets.py文件夹写入下面的代码:

说一下代码的核心逻辑。

第一步 建立字典,定义类别对应的ID,用数字代替类别。

第二步 在__init__里面编写获取图片路径的方法。测试集只有一层路径直接读取,训练集在train文件夹下面是类别文件夹,先获取到类别,再获取到具体的图片路径。然后使用sklearn中切分数据集的方法,按照7:3的比例切分训练集和验证集。

第三步 在__getitem__方法中定义读取单个图片和类别的方法,由于图像中有位深度32位的,所以我在读取图像的时候做了转换。

代码如下:

coding:utf8

import os

from PIL import Image

from torch.utils import data

from torchvision import transforms as T

from sklearn.model_selection import train_test_split

Labels = {‘Black-grass’: 0, ‘Charlock’: 1, ‘Cleavers’: 2, ‘Common Chickweed’: 3,

‘Common wheat’: 4, ‘Fat Hen’: 5, ‘Loose Silky-bent’: 6, ‘Maize’: 7, ‘Scentless Mayweed’: 8,

‘Shepherds Purse’: 9, ‘Small-flowered Cranesbill’: 10, ‘Sugar beet’: 11}

class SeedlingData (data.Dataset):

def init(self, root, transforms=None, train=True, test=False):

“”"

主要目标: 获取所有图片的地址,并根据训练,验证,测试划分数据

“”"

self.test = test

self.transforms = transforms

if self.test:

imgs = [os.path.join(root, img) for img in os.listdir(root)]

self.imgs = imgs

else:

imgs_labels = [os.path.join(root, img) for img in os.listdir(root)]

imgs = []

for imglable in imgs_labels:

for imgname in os.listdir(imglable):

imgpath = os.path.join(imglable, imgname)

imgs.append(imgpath)

trainval_files, val_files = train_test_split(imgs, test_size=0.3, random_state=42)

if train:

self.imgs = trainval_files

else:

self.imgs = val_files

def getitem(self, index):

“”"

一次返回一张图片的数据

“”"

img_path = self.imgs[index]

img_path=img_path.replace(“\”,‘/’)

if self.test:

label = -1

else:

labelname = img_path.split(‘/’)[-2]

label = Labels[labelname]

data = Image.open(img_path).convert(‘RGB’)

data = self.transforms(data)

return data, label

def len(self):

return len(self.imgs)

然后我们在train.py调用SeedlingData读取数据 ,记着导入刚才写的dataset.py(from mydatasets import SeedlingData)

读取数据

dataset_train = SeedlingData(‘data/train’, transforms=transform, train=True)

dataset_test = SeedlingData(“data/train”, transforms=transform_test, train=False)

导入数据

train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, shuffle=True)

test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=False)

设置模型

===============================================================

  • 设置loss函数为nn.CrossEntropyLoss()。

  • 设置模型为coatnet_0,修改最后一层全连接输出改为12。

  • 优化器设置为adam。

  • 学习率调整策略改为余弦退火

实例化模型并且移动到GPU

criterion = nn.CrossEntropyLoss()

model_ft = coatnet_0()

num_ftrs = model_ft.fc.in_features

model_ft.fc = nn.Linear(num_ftrs, 12)

model_ft.to(DEVICE)

选择简单暴力的Adam优化器,学习率调低

optimizer = optim.Adam(model_ft.parameters(), lr=modellr)

cosine_schedule = optim.lr_scheduler.CosineAnnealingLR(optimizer=optimizer,T_max=20,eta_min=1e-9)

定义训练过程

def train(model, device, train_loader, optimizer, epoch):

model.train()

sum_loss = 0

total_num = len(train_loader.dataset)

print(total_num, len(train_loader))

for batch_idx, (data, target) in enumerate(train_loader):

data, target = Variable(data).to(device), Variable(target).to(device)

output = model(data)

loss = criterion(output, target)

optimizer.zero_grad()

loss.backward()

optimizer.step()

print_loss = loss.data.item()

sum_loss += print_loss

if (batch_idx + 1) % 10 == 0:

print(‘Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}’.format(

epoch, (batch_idx + 1) * len(data), len(train_loader.dataset),

    • (batch_idx + 1) / len(train_loader), loss.item()))

ave_loss = sum_loss / len(train_loader)

print(‘epoch:{},loss:{}’.format(epoch, ave_loss))

验证过程

def val(model, device, test_loader):

model.eval()

test_loss = 0

correct = 0

total_num = len(test_loader.dataset)

print(total_num, len(test_loader))

with torch.no_grad():

for data, target in test_loader:

data, target = Variable(data).to(device), Variable(target).to(device)

output = model(data)

loss = criterion(output, target)

_, pred = torch.max(output.data, 1)

correct += torch.sum(pred == target)

print_loss = loss.data.item()

test_loss += print_loss

correct = correct.data.item()

acc = correct / total_num

avgloss = test_loss / len(test_loader)

print(‘\nVal set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n’.format(

avgloss, correct, len(test_loader.dataset), 100 * acc))

训练

for epoch in range(1, EPOCHS + 1):

train(model_ft, DEVICE, train_loader, optimizer, epoch)

cosine_schedule.step()

val(model_ft, DEVICE, test_loader)

torch.save(model_ft, ‘model.pth’)

测试

=============================================================

测试集存放的目录如下图:

image-20211213153331343

第一步 定义类别,这个类别的顺序和训练时的类别顺序对应,一定不要改变顺序!!!!

classes = (‘Black-grass’, ‘Charlock’, ‘Cleavers’, ‘Common Chickweed’,

‘Common wheat’, ‘Fat Hen’, ‘Loose Silky-bent’,

‘Maize’, ‘Scentless Mayweed’, ‘Shepherds Purse’, ‘Small-flowered Cranesbill’, ‘Sugar beet’)

第二步 定义transforms,transforms和验证集的transforms一样即可,别做数据增强。

transform_test = transforms.Compose([

transforms.Resize((224, 224)),

transforms.ToTensor(),

transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])

])

第三步 加载model,并将模型放在DEVICE里。

DEVICE = torch.device(“cuda:0” if torch.cuda.is_available() else “cpu”)

model = torch.load(“model.pth”)

model.eval()

model.to(DEVICE)

第四步 读取图片并预测图片的类别,在这里注意,读取图片用PIL库的Image。不要用cv2,transforms不支持。

path = ‘data/test/’

testList = os.listdir(path)

for file in testList:

img = Image.open(path + file)

img = transform_test(img)

img.unsqueeze_(0)

img = Variable(img).to(DEVICE)

out = model(img)

Predict

_, pred = torch.max(out.data, 1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值