101道算法javaScript描述【一】

数据结构和算法的学习是一个循序渐进的过程,如果可以仔细地阅读这本小册子,相信一定可以帮助到你。同时自己的思考和坚持很重要。好吧,说了那么多,还不赶快学习去。

开篇——复杂度

===================================================================

算法复杂度是考评算法执行效率和消耗资源的一个重要指标。在符合算法本身的要求的基础上,编写的程序运行时间越短,运行过程中占用的内存空间越少,意味着这个算法越“好”。

时间复杂度


时间复杂度是描述算法运行的时间。我们把算法需要运算的次数用输入大小为 nn 的函数来表示,计作 T(n)T(n)。时间复杂度通常用mathcal{O}(n)O(n)来表示,公式为T(n) = mathcal{O}(f(n))T(n)=O(f(n)),其中f(n)f(n)表示每行代码的执行次数之和,注意是执行次数。

常见的时间复杂度

| 名称 | 运行时间T(n)T(n)T(n) | 时间举例 | |

| — | — | — | — |

| 常数 | O(1)\mathcal{O}(1)O(1) | 3 | - |

| 线性 | \mathcal{O}(n)O(n) | nn | 操作数组 |

| 平方 | \mathcal{O}(n^2)O(n2) | n^2n2 | 冒泡排序 |

| 对数 | \mathcal{O}(log(n))O(log(n)) | log(n)log(n)log(n) | 二分搜索 |

  • mathcal{O}(1)O(1) 复杂度

算法执行所需要的时间不随着某个变量n的大小而变化,即此算法时间复杂度为一个常量,可表示为 mathcal{O}(1)O(1)

直接上代码


const a = 1;

console.log(a);




const a = 1;

console.log(a, 1);

console.log(a, 2);

console.log(a, 2);



mathcal{O}(1)O(1)表示常数级别的复杂度,不管你是mathcal{O}(几)O(几),统一给你计作 mathcal{O}(1)O(1)

  • mathcal{O}(n)O(n) 复杂度

for (let i = 0; i < n; i++) {

    // do something

}



上面这段代码,写了一个 for 循环,从 0 到 nn,不管 n 是多少,都要循环 n 次,而且只循环 n 次,所以得到复杂度为 mathcal{O}(n)O(n)

  • mathcal{O}(n^2)O(n2) 复杂度

for (let i = 0; i < n; i++) {

    for (let j = 0; j < n; i++) {

        // do something

    }

}



上面的程序嵌套了两个循环,外层是 0 到 n,内层基于每一个不同的 i,也要从 0 到 n 执行,得到复杂度为 mathcal{O}(n^2)O(n2)。可以看出,随着 n 增大,复杂度会成平方级别增加。

  • mathcal{O}(log (n))O(log(n)) 对数复杂度

    
    for (let i = 1; i <= n; i *= 2) {
    
        // do something
    
    }
    
    
    
    

讲到这里顺便来复习一下高中数学知识,函数y = log_a{x}y=logax叫做对数函数,aa就是对数函数的底数。

对数复杂度是比较常见的一种复杂度,也是比较难分析的一种复杂度。观察上面的代码,i 从 1 开始,每循环一次就乘以 2,直到 i 大于 n 时结束循环。

2 ^1 --> 2^2 --> 2^3 … -->2^x21−−>22−−>23…−−>2x

观察上面列出 i 的取值发现,是一个等比数列,要知道循环了多少次,求出 x 的值即可。由 2^x = n2x=n得到,x = log_2{n}x=log2n,所以这段代码的时间复杂度为log_2{n}log2n。

如果把上面的 i *= 2 改为 i *= 3,那么这段代码的时间复杂度就是 log_3{n}log3n。

根据换底公式

log_c{a} * log_a{b} = log_c{b}logca∗logab=logcb

因此 log_3{n} = log_3{2} * log_2{n}log3n=log32∗log2n ,而 log_3{2}log32 是一个常量,得到 mathcal{O}(log_3(n)) = mathcal{O}(log_2(n))O(log3(n))=O(log2(n))。所以,在对数时间复杂度的表示中,我们忽略对数的“底”,我不管你底数是多少,统一计作mathcal{O}(log (n))O(log(n))。

递归的时间复杂度

在面试的时候,可能会写到一些递归的程序,那么递归的时间复杂度如何考虑?

递归算法中,每个递归函数的的时间复杂度为O(s)O(s),递归的调用次数为 nn,则该递归算法的时间复杂度为 O(n) = n * O(s)O(n)=n∗O(s)

我们先来看一个经典的问题,斐波那契数列(Fibonacci sequence):

F(0)=1,F(1)=1, F(n)=F(n - 1)+F(n - 2)(n ≥ 2,n ∈ N*)F(0)=1,F(1)=1,F(n)=F(n−1)+F(n−2)(n≥2,n∈N∗)


function fibonacci(n) {

    if (n === 0 || n === 1) {

        return 1;

    }

    return fibonacci(n - 1) + fibonacci(n - 2);

}



我们很容易写出上面这样一段递归的代码,往往会忽略了时间复杂度是多少,换句话说调用多少次。可以代一个数进去,例如 n = 5,完了之后大概就能理解递归的时间复杂度是怎么来的。

在这里插入图片描述

上图把 n = 5 的情况都列举出来。可以看出,虽然代码非常简单,在实际运算的时候会有大量的重复计算。

在 nn 层的完全二叉树中,节点的总数为 2^n -12n−1,所以得到 F(n)F(n) 中递归数目的上限为 2^n -12n−1。因此我们可以毛估出 F(n)F(n) 的时间复杂度为 {mathcal{O}(2^n)}O(2n)。

时间复杂度为 mathcal{O}(2^n)O(2n),指数级的时间复杂度,显然不是最优的解法,让计算机傻算了很多次,所以在面试时要稍微留意,如果写出这样的代码,可能会让你的面试官不太满意。

空间复杂度


空间复杂度是对算法运行过程中临时占用空间大小的度量,一个算法所需的存储空间用f(n)f(n)表示,可得出S(n)=mathcal{O}(f(n))S(n)=O(f(n)),其中 nn 为问题的规模,S(n)S(n)表示空间复杂度。通常用 S(n)S(n) 来定义。

常见的空间复杂度

  • {mathcal{O}(1)}O(1) 复杂度

算法执行所需要的临时空间不随着某个变量 n 的大小而变化,即此算法空间复杂度为一个常量,可表示为 {mathcal{O}(1)}O(1)


const a = 1;

const b = 2;

console.log(a);

console.log(b);



以上代码,分配的空间不会随着处理数据量的变化而变化,因此得到空间复杂度为{mathcal{O}(1)}O(1)

  • {mathcal{O}(n)}O(n) 复杂度

先来看这样一段代码


const arr = new Array(n);

for (let i = 0; i < n; i++) {

    // do something

}



上面这段代码的第一行,申请了长度为 nn 的数组空间,下面的 for 循环中没有分配新的空间,可以得出这段代码的时间复杂度为 {mathcal{O}(n)}O(n)。

对数阶的空间复杂度非常少见,而且空间复杂度的分析相对与时间复杂度分析简单很多,这部分不再阐述。

时间空间相互转换


对于一个算法来说,它的时间复杂度和空间复杂度往往是相互影响的。

那我们熟悉的 Chrome 来说,流畅性方面比其他厂商好了多人,但是占用的内存空间略大。

当追求一个较好的时间复杂度时,可能需要消耗更多的储存空间。 反之,如果追求较好的空间复杂度,算法执行的时间可能就会变长。

总结

==============================================================

常见的复杂度不多,从低到高排列就这么几个:O(1)O(1)、{O(log(n))}O(log(n))、{O(n)}O(n)、{O(n^2)}O(n2),等学完后面的章节你会发现,复杂度基本上逃不走,都是上面这个几个。

字符串


在计算机中,字符串是由零个或多个字符组成的有限序列。字符串也是 JavaScript 中最基本的数据类型,学习字符串也是学习编程的基础。

说到字符串,我相信你肯定很熟悉了,是不是觉得很简单。接下来看题。

本章节分为 3 个部分:

  • Part 1

    • 翻转数组

    • 有效的字母异位词

    • 字符串翻转整数

  • Part 2

    • 报数

    • 反转字符串

    • 字符串中的第一个唯一字符

  • Part 3

    • 验证回文字符串

    • 实现 strStr()

    • 最长公共前缀

    • 最长回文子串

阅读完本章节,你将有以下收获:

  • 熟悉 JavaScript 中的基本操作

  • 能够熟练解决字符串一些较基础的问题

翻转整数、有效的字母异位词和翻转整数

翻转整数


给出一个 32 位的有符号整数,你需要将这个整数中每位上的数字进行反转。

示例


示例 1:

输入: 123

输出: 321



示例 2:

输入: -123

输出: -321



示例 3:

输入: 120

输出: 21



注意:

假设我们的环境只能存储得下 32 位的有符号整数,则其数值范围为 [−231,231−1][−2^{31}, 2^{31} − 1][−231,231−1]。请根据这个假设,如果反转后整数溢出那么就返回 0。

方法一 翻转字符串方法

思路

如果将数字看成是有符号位的字符串,那么我们就能够通过使用 JS 提供的字符串方法来实现非符号部分的翻转,又因为整数的翻转并不影响符号,所以我们最后补充符号,完成算法。

详解

  1. 首先设置边界极值;

  2. 使用字符串的翻转函数进行主逻辑;

  3. 补充符号

  4. 然后拼接最终结果

代码


/**

 * @param {number} x

 * @return {number}

 */

const reverse = (x) => {

  // 非空判断

  if (typeof x !== 'number') {

    return;

  }

  // 极值

  const MAX = 2147483647;

  const MIN = -2147483648;



  // 识别数字剩余部分并翻转

  const rest =

    x > 0

      ? String(x)

        .split('')

        .reverse()

        .join('')

      : String(x)

        .slice(1)

        .split('')

        .reverse()

        .join('');



  // 转换为正常值,区分正负数

  const result = x > 0 ? parseInt(rest, 10) : 0 - parseInt(rest, 10);



  // 边界情况

  if (result >= MIN && result <= MAX) {

    return result;

  }

  return 0;

};



复杂度分析

  • 时间复杂度:O(n)O(n)O(n)

    代码中 reverse 函数时间复杂度为 O(n)O(n)O(n),nnn 为整数长度,因此时间复杂度为 O(n)O(n)O(n),考虑到32位整数最大长度为 11,即 -2147483648,也可认为是常数时间复杂度 O(1)O(1)O(1)。

  • 空间复杂度:O(n)O(n)O(n)

    代码中创建临时 String 对象,nnn 为整数长度,因此空间复杂度为 O(n)O(n)O(n),考虑到32位整数最大长度为11,即-2147483648,因此空间复杂度为 O(1)O(1)O(1)。

方法二 类似 欧几里得算法 求解

思路

我们借鉴欧几里得求最大公约数的方法来解题。符号的处理逻辑同方法一,这里我们通过模 10 取到最低位,然后又通过乘 10 将最低位迭代到最高位,完成翻转。

详解

  1. 设置边界极值;

  2. 取给定数值的绝对值,遍历循环生成每一位数字,借鉴欧几里得算法,从 num 的最后一位开始取值拼成新的数

  3. 同步剔除掉被消费的部分

  4. 如果最终结果为异常值,则直接返回 0;如果原本数据为负数,则对最终结果取反

  5. 返回最终结果

代码


/**

 * @param {number} x

 * @return {number}

 */

const reverse = (x) => {

  // 获取相应数的绝对值

  let int = Math.abs(x);

  // 极值

  const MAX = 2147483647;

  const MIN = -2147483648;

  let num = 0;



  // 遍历循环生成每一位数字

  while (int !== 0) {

    // 借鉴欧几里得算法,从 num 的最后一位开始取值拼成新的数

    num = (int % 10) + (num * 10);

    // 剔除掉被消费的部分

    int = Math.floor(int / 10);

  }

  // 异常值

  if (num >= MAX || num <= MIN) {

    return 0;

  }

  if (x < 0) {

    return num * -1;

  }

  return num;

};



复杂度分析:

  • 时间复杂度:O(n)O(n)O(n)

    代码中使用 for 循环,次数为 nnn,即整数的长度,因此时间复杂度为 O(n)O(n)O(n)。

  • 空间复杂度:O(1)O(1)O(1)

    算法中只用到常数个变量,因此空间复杂度为 O(1)O(1)O(1)。

有效的字母异位词


给定两个字符串 s 和 t ,编写一个函数来判断 t 是否是 s 的字母异位词。

示例1


输入: s = "anagram", t = "nagaram"

输出: true



示例2


输入: s = "rat", t = "car"

输出: false



方法一 利用数组sort()方法

思路

首先,对字符串字母进行排序,然后,比较两字符串是否相等。

详解

  1. 首先,将字符串转为数组。

  2. 利用数组 sort 方法进行排序。

  3. 然后,转为字符串进行比较,如果相等返回 true,反之返回 false。

代码


const isAnagram = (s, t) => {

  const sArr = s.split('');

  const tArr = t.split('');

  const sortFn = (a, b) => {

    return a.charCodeAt() - b.charCodeAt();

  };

  sArr.sort(sortFn);

  tArr.sort(sortFn);

  return sArr.join('') === tArr.join('');

};



复杂度分析

  • 时间复杂度:O(nlogn)O(nlogn)O(nlogn)

    JavaScriptsort 方法的实现原理,当数组长度小于等于 10 的时候,采用插入排序,大于 10 的时候,采用快排,快排的平均时间复杂度是 O(nlogn)O(nlogn)O(nlogn)。

  • 空间复杂度:O(n)O(n)O(n) 算法中申请了 2 个数组变量用于存放字符串分割后的字符串数组,所以数组空间长度跟字符串长度线性相关,所以为 O(n)O(n)O(n)。

方法二 计数累加方法

思路

声明一个对象记录字符串每个字母的个数,另外一个字符串每项与得到的对象做匹配,最后,根据计数判断是否相等。

详解

  1. 首先,声明一个变量,遍历其中一个字符串 s 或 t,对每个字母出现的次数进行累加。

  2. 然后,遍历另一个字符串,使每一个字母在已得到的对象中做匹配,如果匹配则对象下的字母个数减 1,如果匹配不到,则返回 false,如果最后对象中每个字母个数都为 0,则表示两字符串相等。

代码


const isAnagram = (s, t) => {

  if (s.length !== t.length) {

    return false;

  }

  const hash = {};

  for (const k of s) {

    hash[k] = hash[k] || 0;

    hash[k] += 1;

  }

  for (const k of t) {

    if (!hash[k]) {

      return false;

    }

    hash[k] -= 1;

  }

  return true;

};



复杂度分析

  • 时间复杂度:O(n)O(n)O(n)

    算法中使用了 2 个单层循环,因此,时间复杂度为 O(n)O(n)O(n)。

  • 空间复杂度:O(1)O(1)O(1)

    申请的变量 hash 最大长度为 256,因为 Ascii 字符最多 256 种可能,因此,考虑为常量空间,即 O(1)O(1)O(1)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值