Grad-Cam实现流程(pytorch)_gradcam实现

最近感觉类激活图可视化是一件很有趣的事情。
CAM(传送门:CAM实现的流程(pytorch))由于对网络结构有定性要求,所以在可视化一些有多个全连接层的网络时,表现不太友好,于是出现了Grad-CAM。

文章目录
算法思路

引用的博主 G5Lorenzo 一句话

Grad-CAM根据输出向量,进行backward,求取特征图的梯度,得到每个特征图上每个像素点对应的梯度,也就是特征图对应的梯度图,然后再对每个梯度图求平均,这个平均值就对应于每个特征图的权重,然后再将权重与特征图进行加权求和,最后经过relu激活函数就可以得到最终的类激活图

实现过程

先准备图片、标签以及模型
类别标签下载方法:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值