- 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
- 🍖 原作者:K同学啊
🚀我的环境:
- 语言环境:python 3.12.6
- 编译器:jupyter lab
- 深度学习环境:TensorFlow 2.17.0
前期工作
import os,PIL,pathlib
import matplotlib.pyplot as plt
import numpy as np
from tensorflow import keras
from tensorflow.keras import layers,models
data_dir = r"d:\Users\yxy\Desktop\weather_photos"
data_dir = pathlib.Path(data_dir)
image_count = len(list(data_dir.glob('*/*.jpg')))
print("图片总数为:",image_count)
图片总数为: 1125
roses = list(data_dir.glob('sunrise/*.jpg'))
PIL.Image.open(str(roses[0]))
数据预处理
import tensorflow as tf
batch_size = 32
img_height = 180
img_width = 180
import os
if os.path.exists(data_dir):
print("Path exists!")
else:
print("Path does not exist.")
Path exists!
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
data_dir,
validation_split=0.2,
subset="training",
seed=123,
image_size=(img_height, img_width),
batch_size=batch_size)
Found 1125 files belonging to 4 classes.
Using 900 files for training.
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
data_dir,
validation_split=0.2,
subset="validation",
seed=123,
image_size=(img_height, img_width),
batch_size=batch_size)
Found 1125 files belonging to 4 classes.
Using 225 files for validation.
class_names = train_ds.class_names
print(class_names)
['cloudy', 'rain', 'shine', 'sunrise']
训练集包含900张图片,验证集包含225张图片,所有图片被均匀地划分为4类
可视化数据
plt.figure(figsize=(20, 10))
for images, labels in train_ds.take(1):
for i in range(20):
ax = plt.subplot(5, 10, i + 1)
plt.imshow(images[i].numpy().astype("uint8"))
plt.title(class_names[labels[i]])
plt.axis("off")
再次检查数据
for image_batch, labels_batch in train_ds:
print(image_batch.shape)
print(labels_batch.shape)
break
(32, 180, 180, 3)
(32,)
配置数据集
AUTOTUNE = tf.data.AUTOTUNE
train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)
构建CNN网络
num_classes = 4
model = models.Sequential([
layers.Rescaling(1./255, input_shape=(img_height, img_width, 3)),
layers.Conv2D(16, (3, 3), activation='relu', input_shape=(img_height, img_width, 3)), # 卷积层1,卷积核3*3
layers.AveragePooling2D((2, 2)), # 池化层1,2*2采样
layers.Conv2D(32, (3, 3), activation='relu'), # 卷积层2,卷积核3*3
layers.AveragePooling2D((2, 2)), # 池化层2,2*2采样
layers.Conv2D(64, (3, 3), activation='relu'), # 卷积层3,卷积核3*3
layers.Dropout(0.3), # 让神经元以一定的概率停止工作,防止过拟合,提高模型的泛化能力。
layers.Flatten(), # Flatten层,连接卷积层与全连接层
layers.Dense(128, activation='relu'), # 全连接层,特征进一步提取
layers.Dense(num_classes) # 输出层,输出预期结果
])
model.summary() # 打印网络结构
C:\Users\yxy\AppData\Local\Programs\Python\Python312\Lib\site-packages\keras\src\layers\preprocessing\tf_data_layer.py:19: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.
super().__init__(**kwargs)
C:\Users\yxy\AppData\Local\Programs\Python\Python312\Lib\site-packages\keras\src\layers\convolutional\base_conv.py:107: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.
super().__init__(activity_regularizer=activity_regularizer, **kwargs)
Model: "sequential"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓ ┃ Layer (type) ┃ Output Shape ┃ Param # ┃ ┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩ │ rescaling (Rescaling) │ (None, 180, 180, 3) │ 0 │ ├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤ │ conv2d (Conv2D) │ (None, 178, 178, 16) │ 448 │ ├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤ │ average_pooling2d (AveragePooling2D) │ (None, 89, 89, 16) │ 0 │ ├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤ │ conv2d_1 (Conv2D) │ (None, 87, 87, 32) │ 4,640 │ ├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤ │ average_pooling2d_1 │ (None, 43, 43, 32) │ 0 │ │ (AveragePooling2D) │ │ │ ├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤ │ conv2d_2 (Conv2D) │ (None, 41, 41, 64) │ 18,496 │ ├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤ │ dropout (Dropout) │ (None, 41, 41, 64) │ 0 │ ├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤ │ flatten (Flatten) │ (None, 107584) │ 0 │ ├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤ │ dense (Dense) │ (None, 128) │ 13,770,880 │ ├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤ │ dense_1 (Dense) │ (None, 4) │ 516 │ └──────────────────────────────────────┴─────────────────────────────┴─────────────────┘
Total params: 13,794,980 (52.62 MB)
Trainable params: 13,794,980 (52.62 MB)
Non-trainable params: 0 (0.00 B)
编译
# 设置优化器
opt = tf.keras.optimizers.Adam(learning_rate=0.001)
model.compile(optimizer=opt,
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
训练模型
epochs = 10
history = model.fit(
train_ds,
validation_data=val_ds,
epochs=epochs
)
Epoch 1/10
[1m29/29[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m9s[0m 232ms/step - accuracy: 0.4405 - loss: 2.1117 - val_accuracy: 0.7644 - val_loss: 0.6185
Epoch 2/10
[1m29/29[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m7s[0m 248ms/step - accuracy: 0.8258 - loss: 0.5146 - val_accuracy: 0.8089 - val_loss: 0.4748
Epoch 3/10
[1m29/29[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m6s[0m 227ms/step - accuracy: 0.8760 - loss: 0.3491 - val_accuracy: 0.8267 - val_loss: 0.4637
Epoch 4/10
[1m29/29[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m6s[0m 224ms/step - accuracy: 0.8636 - loss: 0.3294 - val_accuracy: 0.6533 - val_loss: 0.8600
Epoch 5/10
[1m29/29[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m7s[0m 228ms/step - accuracy: 0.8303 - loss: 0.4439 - val_accuracy: 0.7867 - val_loss: 0.5367
Epoch 6/10
[1m29/29[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m6s[0m 222ms/step - accuracy: 0.9181 - loss: 0.2308 - val_accuracy: 0.8356 - val_loss: 0.4584
Epoch 7/10
[1m29/29[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m7s[0m 244ms/step - accuracy: 0.9236 - loss: 0.1989 - val_accuracy: 0.7956 - val_loss: 0.5130
Epoch 8/10
[1m29/29[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m7s[0m 244ms/step - accuracy: 0.9231 - loss: 0.1858 - val_accuracy: 0.8489 - val_loss: 0.4298
Epoch 9/10
[1m29/29[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m7s[0m 254ms/step - accuracy: 0.9721 - loss: 0.0921 - val_accuracy: 0.8578 - val_loss: 0.4897
Epoch 10/10
[1m29/29[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m7s[0m 244ms/step - accuracy: 0.9684 - loss: 0.0831 - val_accuracy: 0.8533 - val_loss: 0.4566
模型评估
acc = history.history['accuracy']
val_acc = history.history['val_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs_range = range(epochs)
plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()
从图中可以看出,模型在训练过程中,训练集的准确率和验证集的准确率都在逐渐提升,并且验证集的损失值逐渐收敛,说明模型的表现较为稳健。
总结:
本周我使用TensorFlow构建卷积神经网络(CNN),对天气图片进行分类。本周的过程包括数据集的加载、预处理、模型构建、训练以及评估。通过数据预处理与模型调优,我达到较高的训练准确率和验证准确率。