#San的C++学习笔记【126~146】

4.6 继承

继承是面向对象三大特性之一
有些类与类之间存在特殊的关系
我们发现,定义这些类时,下级别的成员除了拥有上一级的共性,还有自己的特性。
这个时候我们就可以考虑利用继承的技术,减少重复代码

4.6.1 继承的基本语法

接下来我们分别利用普通写法和继承的写法来实现网页中的内容,看一下继承存在的意义以及好处

普通实现:

//Java页面
class Java 
{
public:
	void header()
	{
		cout << "首页、公开课、登录、注册...(公共头部)" << endl;
	}
	void footer()
	{
		cout << "帮助中心、交流合作、站内地图...(公共底部)" << endl;
	}
	void left()
	{
		cout << "Java,Python,C++...(公共分类列表)" << endl;
	}
	void content()
	{
		cout << "JAVA学科视频" << endl;
	}
};
//Python页面
class Python
{
public:
	void header()
	{
		cout << "首页、公开课、登录、注册...(公共头部)" << endl;
	}
	void footer()
	{
		cout << "帮助中心、交流合作、站内地图...(公共底部)" << endl;
	}
	void left()
	{
		cout << "Java,Python,C++...(公共分类列表)" << endl;
	}
	void content()
	{
		cout << "Python学科视频" << endl;
	}
};
//C++页面
class CPP 
{
public:
	void header()
	{
		cout << "首页、公开课、登录、注册...(公共头部)" << endl;
	}
	void footer()
	{
		cout << "帮助中心、交流合作、站内地图...(公共底部)" << endl;
	}
	void left()
	{
		cout << "Java,Python,C++...(公共分类列表)" << endl;
	}
	void content()
	{
		cout << "C++学科视频" << endl;
	}
};

void test01()
{
	//Java页面
	cout << "Java下载视频页面如下: " << endl;
	Java ja;
	ja.header();
	ja.footer();
	ja.left();
	ja.content();
	cout << "--------------------" << endl;

	//Python页面
	cout << "Python下载视频页面如下: " << endl;
	Python py;
	py.header();
	py.footer();
	py.left();
	py.content();
	cout << "--------------------" << endl;

	//C++页面
	cout << "C++下载视频页面如下: " << endl;
	CPP cp;
	cp.header();
	cp.footer();
	cp.left();
	cp.content();

}

int main() {

	test01();

	system("pause");

	return 0;
}

在这里插入图片描述
继承实现:

//公共页面
class BasePage
{
public:
	void header()
	{
		cout << "首页、公开课、登录、注册...(公共头部)" << endl;
	}

	void footer()
	{
		cout << "帮助中心、交流合作、站内地图...(公共底部)" << endl;
	}
	void left()
	{
		cout << "Java,Python,C++...(公共分类列表)" << endl;
	}

};

//Java页面
class Java : public BasePage
{
public:
	void content()
	{
		cout << "JAVA学科视频" << endl;
	}
};
//Python页面
class Python : public BasePage
{
public:
	void content()
	{
		cout << "Python学科视频" << endl;
	}
};
//C++页面
class CPP : public BasePage
{
public:
	void content()
	{
		cout << "C++学科视频" << endl;
	}
};

void test01()
{
	//Java页面
	cout << "Java下载视频页面如下: " << endl;
	Java ja;
	ja.header();
	ja.footer();
	ja.left();
	ja.content();
	cout << "--------------------" << endl;

	//Python页面
	cout << "Python下载视频页面如下: " << endl;
	Python py;
	py.header();
	py.footer();
	py.left();
	py.content();
	cout << "--------------------" << endl;

	//C++页面
	cout << "C++下载视频页面如下: " << endl;
	CPP cp;
	cp.header();
	cp.footer();
	cp.left();
	cp.content();


}

int main() {

	test01();

	system("pause");

	return 0;
}

在这里插入图片描述
总结:
继承的好处:可以减少重复的代码
class A : public B;
A 类称为子类 或 派生类
B 类称为父类 或 基类

派生类中的成员,包含两大部分
1.从基类继承过来的
2.自己增加的成员。

从基类继承过过来的表现其共性,而新增的成员体现了其个性。

4.6.2 继承方式

继承的语法:class 子类 : 继承方式 父类

继承方式一共有三种:
1.公共继承
2.保护继承
3.私有继承

请添加图片描述

class Base1
{
public: 
	int m_A;
protected:
	int m_B;
private:
	int m_C;
};

//公共继承
class Son1 :public Base1
{
public:
	void func()
	{
		m_A; //可访问 public权限
		m_B; //可访问 protected权限
		//m_C; //不可访问
	}
};

void myClass()
{
	Son1 s1;
	s1.m_A; //其他类只能访问到公共权限
}

//保护继承
class Base2
{
public:
	int m_A;
protected:
	int m_B;
private:
	int m_C;
};
class Son2:protected Base2
{
public:
	void func()
	{
		m_A; //可访问 protected权限
		m_B; //可访问 protected权限
		//m_C; //不可访问
	}
};
void myClass2()
{
	Son2 s;
	//s.m_A; //不可访问
}

//私有继承
class Base3
{
public:
	int m_A;
protected:
	int m_B;
private:
	int m_C;
};
class Son3:private Base3
{
public:
	void func()
	{
		m_A; //可访问 private权限
		m_B; //可访问 private权限
		//m_C; //不可访问
	}
};
class GrandSon3 :public Son3
{
public:
	void func()
	{
		//Son3是私有继承,所以继承Son3的属性在GrandSon3中都无法访问到
		//m_A;
		//m_B;
		//m_C;
	}
};
4.6.3 继承中的对象模型

问题:从父类继承过来的成员,哪些属于子类对象中?

class Base
{
public:
	int m_A;
protected:
	int m_B;
private:
	int m_C; //私有成员只是被隐藏了,但是还是会继承下去
};

//公共继承
class Son :public Base
{
public:
	int m_D;
};

void test01()
{
	cout << "sizeof Son = " << sizeof(Son) << endl;
}

int main() {

	test01();

	system("pause");

	return 0;
}

在这里插入图片描述

结论: 父类中私有成员也是被子类继承下去了,只是由编译器给隐藏后访问不到

4.6.4 继承中构造和析构顺序

子类继承父类后,当创建子类对象,也会调用父类的构造函数

问题:父类和子类的构造和析构顺序是谁先谁后?

class Base 
{
public:
	Base()
	{
		cout << "Base构造函数!" << endl;
	}
	~Base()
	{
		cout << "Base析构函数!" << endl;
	}
};

class Son : public Base
{
public:
	Son()
	{
		cout << "Son构造函数!" << endl;
	}
	~Son()
	{
		cout << "Son析构函数!" << endl;
	}

};


void test01()
{
	//继承中 先调用父类构造函数,再调用子类构造函数,析构顺序与构造相反
	Son s;
}

int main() {

	test01();

	system("pause");

	return 0;
}

在这里插入图片描述

总结:继承中 先调用父类构造函数,再调用子类构造函数,析构顺序与构造相反

4.6.5 继承同名成员处理方式

问题:当子类与父类出现同名的成员,如何通过子类对象,访问到子类或父类中同名的数据呢?

  • 访问子类同名成员 直接访问即可
  • 访问父类同名成员 需要加作用域
class Base {
public:
	Base()
	{
		m_A = 100;
	}

	void func()
	{
		cout << "Base - func()调用" << endl;
	}

	void func(int a)
	{
		cout << "Base - func(int a)调用" << endl;
	}

public:
	int m_A;
};


class Son : public Base {
public:
	Son()
	{
		m_A = 200;
	}

	//当子类与父类拥有同名的成员函数,子类会隐藏父类中所有版本的同名成员函数
	//如果想访问父类中被隐藏的同名成员函数,需要加父类的作用域
	void func()
	{
		cout << "Son - func()调用" << endl;
	}
public:
	int m_A;
};

void test01()
{
	Son s;

	cout << "Son下的m_A = " << s.m_A << endl;
	cout << "Base下的m_A = " << s.Base::m_A << endl;

	s.func();
	s.Base::func();
	s.Base::func(10);

}
int main() {

	test01();

	system("pause");
	return EXIT_SUCCESS;
}

在这里插入图片描述

总结:
1.子类对象可以直接访问到子类中同名成员
2.子类对象加作用域可以访问到父类同名成员
3.当子类与父类拥有同名的成员函数,子类会隐藏父类中同名成员函数,加作用域可以访问到父类中同名函数

4.6.6 继承同名静态成员处理方式

问题:继承中同名的静态成员在子类对象上如何进行访问?

静态成员和非静态成员出现同名,处理方式一致

  • 访问子类同名成员 直接访问即可
  • 访问父类同名成员 需要加作用域
class Base {
public:
	static void func()
	{
		cout << "Base - static void func()" << endl;
	}
	static void func(int a)
	{
		cout << "Base - static void func(int a)" << endl;
	}

	static int m_A;
};

int Base::m_A = 100;

class Son : public Base {
public:
	static void func()
	{
		cout << "Son - static void func()" << endl;
	}
	static int m_A;
};

int Son::m_A = 200;

//同名成员属性
void test01()
{
	//通过对象访问
	cout << "通过对象访问: " << endl;
	Son s;
	cout << "Son  下 m_A = " << s.m_A << endl;
	cout << "Base 下 m_A = " << s.Base::m_A << endl;

	//通过类名访问
	cout << "通过类名访问: " << endl;
	cout << "Son  下 m_A = " << Son::m_A << endl;
	cout << "Base 下 m_A = " << Son::Base::m_A << endl;
}

//同名成员函数
void test02()
{
	//通过对象访问
	cout << "通过对象访问: " << endl;
	Son s;
	s.func();
	s.Base::func();

	cout << "通过类名访问: " << endl;
	Son::func();
	Son::Base::func();
	//出现同名,子类会隐藏掉父类中所有同名成员函数,需要加作作用域访问
	Son::Base::func(100);
}
int main() {

	//test01();
	test02();

	system("pause");

	return 0;
}

在这里插入图片描述

总结:同名静态成员处理方式和非静态处理方式一样,只不过有两种访问的方式(通过对象 和 通过类名)

4.6.7 多继承语法

C++允许一个类继承多个类

语法: class 子类 :继承方式 父类1 , 继承方式 父类2...

多继承可能会引发父类中有同名成员出现,需要加作用域区分

C++实际开发中不建议用多继承

class Base1 {
public:
	Base1()
	{
		m_A = 100;
	}
public:
	int m_A;
};

class Base2 {
public:
	Base2()
	{
		m_A = 200;  //开始是m_B 不会出问题,但是改为mA就会出现不明确
	}
public:
	int m_A;
};

//语法:class 子类:继承方式 父类1 ,继承方式 父类2 
class Son : public Base2, public Base1 
{
public:
	Son()
	{
		m_C = 300;
		m_D = 400;
	}
public:
	int m_C;
	int m_D;
};


//多继承容易产生成员同名的情况
//通过使用类名作用域可以区分调用哪一个基类的成员
void test01()
{
	Son s;
	cout << "sizeof Son = " << sizeof(s) << endl;
	cout << s.Base1::m_A << endl;
	cout << s.Base2::m_A << endl;
}

int main() {

	test01();

	system("pause");

	return 0;
}

在这里插入图片描述

总结: 多继承中如果父类中出现了同名情况,子类使用时候要加作用域

4.6.8 菱形继承

菱形继承概念:

​ 两个派生类继承同一个基类

​ 又有某个类同时继承者两个派生类

​ 这种继承被称为菱形继承,或者钻石继承

菱形继承问题:

  1. 羊继承了动物的数据,驼同样继承了动物的数据,当草泥马使用数据时,就会产生二义性。

  2. 草泥马继承自动物的数据继承了两份,其实我们应该清楚,这份数据我们只需要一份就可以。

class Animal
{
public:
	int m_Age;
};

//继承前加virtual关键字后,变为虚继承
//此时公共的父类Animal称为虚基类
class Sheep : virtual public Animal {};
class Tuo   : virtual public Animal {};
class SheepTuo : public Sheep, public Tuo {};

void test01()
{
	SheepTuo st;
	st.Sheep::m_Age = 100;
	st.Tuo::m_Age = 200;

	cout << "st.Sheep::m_Age = " << st.Sheep::m_Age << endl;
	cout << "st.Tuo::m_Age = " <<  st.Tuo::m_Age << endl;
	cout << "st.m_Age = " << st.m_Age << endl;
}


int main() {

	test01();

	system("pause");

	return 0;
}

在这里插入图片描述

总结:

  • 菱形继承带来的主要问题是子类继承两份相同的数据,导致资源浪费以及毫无意义
  • 利用虚继承可以解决菱形继承问题

4.7 多态

4.7.1 多态的基本概念

多态是C++面向对象三大特性之一

多态分为两类

  • 静态多态: 函数重载 和 运算符重载属于静态多态,复用函数名
  • 动态多态: 派生类和虚函数实现运行时多态

静态多态和动态多态区别:

  • 静态多态的函数地址早绑定 - 编译阶段确定函数地址
  • 动态多态的函数地址晚绑定 - 运行阶段确定函数地址
class Animal
{
public:
	//Speak函数就是虚函数
	//函数前面加上virtual关键字,变成虚函数,那么编译器在编译的时候就不能确定函数调用了。
	virtual void speak()
	{
		cout << "动物在说话" << endl;
	}
};

class Cat :public Animal
{
public:
	void speak()
	{
		cout << "小猫在说话" << endl;
	}
};

class Dog :public Animal
{
public:

	void speak()
	{
		cout << "小狗在说话" << endl;
	}

};
//我们希望传入什么对象,那么就调用什么对象的函数
//如果函数地址在编译阶段就能确定,那么静态联编
//如果函数地址在运行阶段才能确定,就是动态联编

void DoSpeak(Animal & animal)
{
	animal.speak();
}
//
//多态满足条件: 
//1、有继承关系
//2、子类重写父类中的虚函数
//多态使用:
//父类指针或引用指向子类对象

void test01()
{
	Cat cat;
	DoSpeak(cat);


	Dog dog;
	DoSpeak(dog);
}


int main() {

	test01();

	system("pause");

	return 0;
}

在这里插入图片描述

总结:

多态满足条件

  • 有继承关系
  • 子类重写父类中的虚函数

多态使用条件

  • 父类指针或引用指向子类对象

重写:函数返回值类型 函数名 参数列表 完全一致称为重写

4.7.2 多态案例一-计算器类

案例描述:

分别利用普通写法和多态技术,设计实现两个操作数进行运算的计算器类

多态的优点:

  • 代码组织结构清晰
  • 可读性强
  • 利于前期和后期的扩展以及维护
//普通实现
class Calculator {
public:
	int getResult(string oper)
	{
		if (oper == "+") {
			return m_Num1 + m_Num2;
		}
		else if (oper == "-") {
			return m_Num1 - m_Num2;
		}
		else if (oper == "*") {
			return m_Num1 * m_Num2;
		}
		//如果要提供新的运算,需要修改源码
	}
public:
	int m_Num1;
	int m_Num2;
};

void test01()
{
	//普通实现测试
	Calculator c;
	c.m_Num1 = 10;
	c.m_Num2 = 10;
	cout << c.m_Num1 << " + " << c.m_Num2 << " = " << c.getResult("+") << endl;

	cout << c.m_Num1 << " - " << c.m_Num2 << " = " << c.getResult("-") << endl;

	cout << c.m_Num1 << " * " << c.m_Num2 << " = " << c.getResult("*") << endl;
}



//多态实现
//抽象计算器类
//多态优点:代码组织结构清晰,可读性强,利于前期和后期的扩展以及维护
class AbstractCalculator
{
public :

	virtual int getResult()
	{
		return 0;
	}

	int m_Num1;
	int m_Num2;
};

//加法计算器
class AddCalculator :public AbstractCalculator
{
public:
	int getResult()
	{
		return m_Num1 + m_Num2;
	}
};

//减法计算器
class SubCalculator :public AbstractCalculator
{
public:
	int getResult()
	{
		return m_Num1 - m_Num2;
	}
};

//乘法计算器
class MulCalculator :public AbstractCalculator
{
public:
	int getResult()
	{
		return m_Num1 * m_Num2;
	}
};


void test02()
{
	//创建加法计算器
	AbstractCalculator *abc = new AddCalculator;
	abc->m_Num1 = 10;
	abc->m_Num2 = 10;
	cout << abc->m_Num1 << " + " << abc->m_Num2 << " = " << abc->getResult() << endl;
	delete abc;  //用完了记得销毁

	//创建减法计算器
	abc = new SubCalculator;
	abc->m_Num1 = 10;
	abc->m_Num2 = 10;
	cout << abc->m_Num1 << " - " << abc->m_Num2 << " = " << abc->getResult() << endl;
	delete abc;  

	//创建乘法计算器
	abc = new MulCalculator;
	abc->m_Num1 = 10;
	abc->m_Num2 = 10;
	cout << abc->m_Num1 << " * " << abc->m_Num2 << " = " << abc->getResult() << endl;
	delete abc;
}

int main() {

	//test01();

	test02();

	system("pause");

	return 0;
}

在这里插入图片描述

总结:C++开发提倡利用多态设计程序架构,因为多态优点很多

4.7.3 纯虚函数和抽象类

在多态中,通常父类中虚函数的实现是毫无意义的,主要都是调用子类重写的内容

因此可以将虚函数改为纯虚函数

纯虚函数语法:virtual 返回值类型 函数名 (参数列表)= 0 ;

当类中有了纯虚函数,这个类也称为抽象类

抽象类特点

  • 无法实例化对象
  • 子类必须重写抽象类中的纯虚函数,否则也属于抽象类
class Base
{
public:
	//纯虚函数
	//类中只要有一个纯虚函数就称为抽象类
	//抽象类无法实例化对象
	//子类必须重写父类中的纯虚函数,否则也属于抽象类
	virtual void func() = 0;
};

class Son :public Base
{
public:
	virtual void func() 
	{
		cout << "func调用" << endl;
	};
};

void test01()
{
	Base * base = NULL;
	//base = new Base; // 错误,抽象类无法实例化对象
	base = new Son;
	base->func();
	delete base;//记得销毁
}

int main() {

	test01();

	system("pause");

	return 0;
}

在这里插入图片描述

4.7.4 多态案例二-制作饮品

案例描述:

制作饮品的大致流程为:煮水 - 冲泡 - 倒入杯中 - 加入辅料

利用多态技术实现本案例,提供抽象制作饮品基类,提供子类制作咖啡和茶叶

//抽象制作饮品
class AbstractDrinking {
public:
	//烧水
	virtual void Boil() = 0;
	//冲泡
	virtual void Brew() = 0;
	//倒入杯中
	virtual void PourInCup() = 0;
	//加入辅料
	virtual void PutSomething() = 0;
	//规定流程
	void MakeDrink() {
		Boil();
		Brew();
		PourInCup();
		PutSomething();
	}
};

//制作咖啡
class Coffee : public AbstractDrinking {
public:
	//烧水
	virtual void Boil() {
		cout << "煮农夫山泉!" << endl;
	}
	//冲泡
	virtual void Brew() {
		cout << "冲泡咖啡!" << endl;
	}
	//倒入杯中
	virtual void PourInCup() {
		cout << "将咖啡倒入杯中!" << endl;
	}
	//加入辅料
	virtual void PutSomething() {
		cout << "加入牛奶!" << endl;
	}
};

//制作茶水
class Tea : public AbstractDrinking {
public:
	//烧水
	virtual void Boil() {
		cout << "煮自来水!" << endl;
	}
	//冲泡
	virtual void Brew() {
		cout << "冲泡茶叶!" << endl;
	}
	//倒入杯中
	virtual void PourInCup() {
		cout << "将茶水倒入杯中!" << endl;
	}
	//加入辅料
	virtual void PutSomething() {
		cout << "加入枸杞!" << endl;
	}
};

//业务函数
void DoWork(AbstractDrinking* drink) {
	drink->MakeDrink();
	delete drink;
}

void test01() {
	DoWork(new Coffee);
	cout << "--------------" << endl;
	DoWork(new Tea);
}


int main() {

	test01();

	system("pause");

	return 0;
}

在这里插入图片描述

4.7.5 虚析构和纯虚析构

多态使用时,如果子类中有属性开辟到堆区,那么父类指针在释放时无法调用到子类的析构代码

解决方式:将父类中的析构函数改为**虚析构或者纯虚析构**

虚析构和纯虚析构共性:

  • 可以解决父类指针释放子类对象
  • 都需要有具体的函数实现

虚析构和纯虚析构区别:

  • 如果是纯虚析构,该类属于抽象类,无法实例化对象

虚析构语法:

virtual ~类名(){}

纯虚析构语法:

virtual ~类名() = 0;

类名::~类名(){}

class Animal {
public:

	Animal()
	{
		cout << "Animal 构造函数调用!" << endl;
	}
	virtual void Speak() = 0;

	//析构函数加上virtual关键字,变成虚析构函数
	//virtual ~Animal()
	//{
	//	cout << "Animal虚析构函数调用!" << endl;
	//}


	virtual ~Animal() = 0;
};

Animal::~Animal()
{
	cout << "Animal 纯虚析构函数调用!" << endl;
}

//和包含普通纯虚函数的类一样,包含了纯虚析构函数的类也是一个抽象类。不能够被实例化。

class Cat : public Animal {
public:
	Cat(string name)
	{
		cout << "Cat构造函数调用!" << endl;
		m_Name = new string(name);
	}
	virtual void Speak()
	{
		cout << *m_Name <<  "小猫在说话!" << endl;
	}
	~Cat()
	{
		cout << "Cat析构函数调用!" << endl;
		if (this->m_Name != NULL) {
			delete m_Name;
			m_Name = NULL;
		}
	}

public:
	string *m_Name;
};

void test01()
{
	Animal *animal = new Cat("Tom");
	animal->Speak();

	//通过父类指针去释放,会导致子类对象可能清理不干净,造成内存泄漏
	//怎么解决?给基类增加一个虚析构函数
	//虚析构函数就是用来解决通过父类指针释放子类对象
	delete animal;
}

int main() {

	test01();

	system("pause");

	return 0;
}

在这里插入图片描述

总结:

​ 1. 虚析构或纯虚析构就是用来解决通过父类指针释放子类对象

​ 2. 如果子类中没有堆区数据,可以不写为虚析构或纯虚析构

​ 3. 拥有纯虚析构函数的类也属于抽象类

4.7.6 多态案例三-电脑组装

案例描述:

电脑主要组成部件为 CPU(用于计算),显卡(用于显示),内存条(用于存储)

将每个零件封装出抽象基类,并且提供不同的厂商生产不同的零件,例如Intel厂商和Lenovo厂商

创建电脑类提供让电脑工作的函数,并且调用每个零件工作的接口

测试时组装三台不同的电脑进行工作

#include<iostream>
using namespace std;

//抽象CPU类
class CPU
{
public:
	//抽象的计算函数
	virtual void calculate() = 0;
};

//抽象显卡类
class VideoCard
{
public:
	//抽象的显示函数
	virtual void display() = 0;
};

//抽象内存条类
class Memory
{
public:
	//抽象的存储函数
	virtual void storage() = 0;
};

//电脑类
class Computer
{
public:
	Computer(CPU * cpu, VideoCard * vc, Memory * mem)
	{
		m_cpu = cpu;
		m_vc = vc;
		m_mem = mem;
	}

	//提供工作的函数
	void work()
	{
		//让零件工作起来,调用接口
		m_cpu->calculate();

		m_vc->display();

		m_mem->storage();
	}

	//提供析构函数 释放3个电脑零件
	~Computer()
	{

		//释放CPU零件
		if (m_cpu != NULL)
		{
			delete m_cpu;
			m_cpu = NULL;
		}

		//释放显卡零件
		if (m_vc != NULL)
		{
			delete m_vc;
			m_vc = NULL;
		}

		//释放内存条零件
		if (m_mem != NULL)
		{
			delete m_mem;
			m_mem = NULL;
		}
	}

private:

	CPU * m_cpu; //CPU的零件指针
	VideoCard * m_vc; //显卡零件指针
	Memory * m_mem; //内存条零件指针
};

//具体厂商
//Intel厂商
class IntelCPU :public CPU
{
public:
	virtual void calculate()
	{
		cout << "Intel的CPU开始计算了!" << endl;
	}
};

class IntelVideoCard :public VideoCard
{
public:
	virtual void display()
	{
		cout << "Intel的显卡开始显示了!" << endl;
	}
};

class IntelMemory :public Memory
{
public:
	virtual void storage()
	{
		cout << "Intel的内存条开始存储了!" << endl;
	}
};

//Lenovo厂商
class LenovoCPU :public CPU
{
public:
	virtual void calculate()
	{
		cout << "Lenovo的CPU开始计算了!" << endl;
	}
};

class LenovoVideoCard :public VideoCard
{
public:
	virtual void display()
	{
		cout << "Lenovo的显卡开始显示了!" << endl;
	}
};

class LenovoMemory :public Memory
{
public:
	virtual void storage()
	{
		cout << "Lenovo的内存条开始存储了!" << endl;
	}
};


void test01()
{
	//第一台电脑零件
	CPU * intelCpu = new IntelCPU;
	VideoCard * intelCard = new IntelVideoCard;
	Memory * intelMem = new IntelMemory;

	cout << "第一台电脑开始工作:" << endl;
	//创建第一台电脑
	Computer * computer1 = new Computer(intelCpu, intelCard, intelMem);
	computer1->work();
	delete computer1;

	cout << "-----------------------" << endl;
	cout << "第二台电脑开始工作:" << endl;
	//第二台电脑组装
	Computer * computer2 = new Computer(new LenovoCPU, new LenovoVideoCard, new LenovoMemory);;
	computer2->work();
	delete computer2;

	cout << "-----------------------" << endl;
	cout << "第三台电脑开始工作:" << endl;
	//第三台电脑组装
	Computer * computer3 = new Computer(new LenovoCPU, new IntelVideoCard, new LenovoMemory);;
	computer3->work();
	delete computer3;

}

在这里插入图片描述

5 文件操作

程序运行时产生的数据都属于临时数据,程序一旦运行结束都会被释放

通过文件可以将数据持久化

C++中对文件操作需要包含头文件 < fstream >

文件类型分为两种:

  1. 文本文件 - 文件以文本的ASCII码形式存储在计算机中
  2. 二进制文件 - 文件以文本的二进制形式存储在计算机中,用户一般不能直接读懂它们

操作文件的三大类:
1.ofstream:写操作
2. ifstream: 读操作
3. fstream : 读写操作

5.1文本文件

5.1.1写文件

写文件步骤如下:

  1. 包含头文件

    #include <fstream>

  2. 创建流对象

    ofstream ofs;

  3. 打开文件

    ofs.open(“文件路径”,打开方式);

  4. 写数据

    ofs << “写入的数据”;

  5. 关闭文件

    ofs.close();

文件打开方式:

打开方式解释
ios::in为读文件而打开文件
ios::out为写文件而打开文件
ios::ate初始位置:文件尾
ios::app追加方式写文件
ios::trunc如果文件存在先删除,再创建
ios::binary二进制方式

注意: 文件打开方式可以配合使用,利用|操作符

用二进制方式写文件 ios::binary | ios:: out

#include <fstream>

void test01()
{
	ofstream ofs;
	ofs.open("test.txt", ios::out);

	ofs << "姓名:张三" << endl;
	ofs << "性别:男" << endl;
	ofs << "年龄:18" << endl;

	ofs.close();
}

int main() {

	test01();

	system("pause");

	return 0;
}

在这里插入图片描述

总结:

  • 文件操作必须包含头文件 fstream
  • 读文件可以利用 ofstream ,或者fstream类
  • 打开文件时候需要指定操作文件的路径,以及打开方式
  • 利用<<可以向文件中写数据
  • 操作完毕,要关闭文件
5.1.2读文件

读文件与写文件步骤相似,但是读取方式相对于比较多

读文件步骤如下:

  1. 包含头文件

    #include <fstream>

  2. 创建流对象

    ifstream ifs;

  3. 打开文件并判断文件是否打开成功

    ifs.open(“文件路径”,打开方式);

  4. 读数据

    四种方式读取

  5. 关闭文件

    ifs.close();

#include <fstream>
#include <string>
void test01()
{
	ifstream ifs;
	ifs.open("test.txt", ios::in);

	if (!ifs.is_open())
	{
		cout << "文件打开失败" << endl;
		return;
	}

	//第一种方式
	//char buf[1024] = { 0 };
	//while (ifs >> buf)
	//{
	//	cout << buf << endl;
	//}

	//第二种
	//char buf[1024] = { 0 };
	//while (ifs.getline(buf,sizeof(buf)))
	//{
	//	cout << buf << endl;
	//}

	//第三种
	//string buf;
	//while (getline(ifs, buf))
	//{
	//	cout << buf << endl;
	//}

	char c;
	while ((c = ifs.get()) != EOF)
	{
		cout << c;
	}

	ifs.close();


}

int main() {

	test01();

	system("pause");

	return 0;
}

在这里插入图片描述

总结:

  • 读文件可以利用 ifstream ,或者fstream类
  • 利用is_open函数可以判断文件是否打开成功
  • close 关闭文件

5.2 二进制文件

以二进制的方式对文件进行读写操作

打开方式要指定为 ios::binary

5.2.1 写文件

二进制方式写文件主要利用流对象调用成员函数write

函数原型 :ostream& write(const char * buffer,int len);

参数解释:字符指针buffer指向内存中一段存储空间。len是读写的字节数

#include <fstream>
#include <string>

class Person
{
public:
	char m_Name[64];
	int m_Age;
};

//二进制文件  写文件
void test01()
{
	//1、包含头文件

	//2、创建输出流对象
	ofstream ofs("person.txt", ios::out | ios::binary);
	
	//3、打开文件
	//ofs.open("person.txt", ios::out | ios::binary);

	Person p = {"张三"  , 18};

	//4、写文件
	ofs.write((const char *)&p, sizeof(p));

	//5、关闭文件
	ofs.close();
}

int main() {

	test01();

	system("pause");

	return 0;
}

在这里插入图片描述

总结:

  • 文件输出流对象 可以通过write函数,以二进制方式写数据
5.2.2 读文件

二进制方式读文件主要利用流对象调用成员函数read

函数原型:istream& read(char *buffer,int len);

参数解释:字符指针buffer指向内存中一段存储空间。len是读写的字节数

#include <fstream>
#include <string>

class Person
{
public:
	char m_Name[64];
	int m_Age;
};

void test01()
{
	ifstream ifs("person.txt", ios::in | ios::binary);
	if (!ifs.is_open())
	{
		cout << "文件打开失败" << endl;
	}

	Person p;
	ifs.read((char *)&p, sizeof(p));

	cout << "姓名: " << p.m_Name << " 年龄: " << p.m_Age << endl;
}

int main() {

	test01();

	system("pause");

	return 0;
}

在这里插入图片描述

  • 文件输入流对象 可以通过read函数,以二进制方式读数据
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值