本文使用Python库dlib和OpenCV来实现面部特征点的检测和标注。
下面是代码的主要步骤和相关的代码片段:
步骤一:导入必要的库和设置参数
首先,代码导入了必要的Python库,并通过argparse
设置了输入图像和面部标记预测器的参数。
from collections import OrderedDict
import numpy as np
import argparse
import dlib
import cv2
步骤二:定义面部关键点索引
使用OrderedDict
定义了两组面部关键点,一组包含68个点,另一组包含5个点,这些关键点用于后续的特征提取。
FACIAL_LANDMARKS_68_IDXS = OrderedDict([
("mouth", (48, 68)),
("right\_eyebrow", (17, 22)),
("left\_eyebrow", (22, 27)),
("right\_eye", (36, 42)),
("left\_eye", (42, 48)),
("nose", (27, 36)),
("jaw", (0, 17))
])
步骤三:人脸检测和关键点预测
使用dlib的面部检测器和预测器,对输入的图像进行人脸检测,并对每个检测到的人脸进行关键点定位。
detector = dlib.get_fronta