- 博客(285)
- 收藏
- 关注
原创 Kafka文件存储机制那些事1
在Kafka文件存储中,同一个topic下有多个不同partition,每个partition为一个目录,partiton命名规则为topic名称+有序序号,第一个partiton序号从0开始,序号最大值为partitions数量减1。从上述图3可知这样做的优点,segment index file采取稀疏索引存储方式,它减少索引文件大小,通过mmap可以直接内存操作,稀疏索引为数据文件的每个对应message设置一个元数据指针,它比稠密索引节省了更多的存储空间,但查找起来需要消耗更多的时间。
2025-01-09 23:13:46
578
1
原创 Kafka文件存储机制那些事2
在Kafka文件存储中,同一个topic下有多个不同partition,每个partition为一个目录,partiton命名规则为topic名称+有序序号,第一个partiton序号从0开始,序号最大值为partitions数量减1。从上述图3可知这样做的优点,segment index file采取稀疏索引存储方式,它减少索引文件大小,通过mmap可以直接内存操作,稀疏索引为数据文件的每个对应message设置一个元数据指针,它比稠密索引节省了更多的存储空间,但查找起来需要消耗更多的时间。
2025-01-09 23:13:43
969
原创 Kafka文件存储机制那些事3
在Kafka文件存储中,同一个topic下有多个不同partition,每个partition为一个目录,partiton命名规则为topic名称+有序序号,第一个partiton序号从0开始,序号最大值为partitions数量减1。从上述图3可知这样做的优点,segment index file采取稀疏索引存储方式,它减少索引文件大小,通过mmap可以直接内存操作,稀疏索引为数据文件的每个对应message设置一个元数据指针,它比稠密索引节省了更多的存储空间,但查找起来需要消耗更多的时间。
2025-01-09 23:13:41
1043
1
原创 Kafka文件存储机制那些事4
在Kafka文件存储中,同一个topic下有多个不同partition,每个partition为一个目录,partiton命名规则为topic名称+有序序号,第一个partiton序号从0开始,序号最大值为partitions数量减1。从上述图3可知这样做的优点,segment index file采取稀疏索引存储方式,它减少索引文件大小,通过mmap可以直接内存操作,稀疏索引为数据文件的每个对应message设置一个元数据指针,它比稠密索引节省了更多的存储空间,但查找起来需要消耗更多的时间。
2025-01-09 23:13:38
756
原创 Kafka文件存储机制那些事5
在Kafka文件存储中,同一个topic下有多个不同partition,每个partition为一个目录,partiton命名规则为topic名称+有序序号,第一个partiton序号从0开始,序号最大值为partitions数量减1。从上述图3可知这样做的优点,segment index file采取稀疏索引存储方式,它减少索引文件大小,通过mmap可以直接内存操作,稀疏索引为数据文件的每个对应message设置一个元数据指针,它比稠密索引节省了更多的存储空间,但查找起来需要消耗更多的时间。
2025-01-09 23:13:35
913
3
原创 Kafka文件存储机制那些事6
在Kafka文件存储中,同一个topic下有多个不同partition,每个partition为一个目录,partiton命名规则为topic名称+有序序号,第一个partiton序号从0开始,序号最大值为partitions数量减1。从上述图3可知这样做的优点,segment index file采取稀疏索引存储方式,它减少索引文件大小,通过mmap可以直接内存操作,稀疏索引为数据文件的每个对应message设置一个元数据指针,它比稠密索引节省了更多的存储空间,但查找起来需要消耗更多的时间。
2025-01-09 23:13:30
926
2
原创 Kafka文件存储机制那些事7
在Kafka文件存储中,同一个topic下有多个不同partition,每个partition为一个目录,partiton命名规则为topic名称+有序序号,第一个partiton序号从0开始,序号最大值为partitions数量减1。从上述图3可知这样做的优点,segment index file采取稀疏索引存储方式,它减少索引文件大小,通过mmap可以直接内存操作,稀疏索引为数据文件的每个对应message设置一个元数据指针,它比稠密索引节省了更多的存储空间,但查找起来需要消耗更多的时间。
2025-01-09 23:13:27
803
2
原创 Kafka文件存储机制那些事8
在Kafka文件存储中,同一个topic下有多个不同partition,每个partition为一个目录,partiton命名规则为topic名称+有序序号,第一个partiton序号从0开始,序号最大值为partitions数量减1。从上述图3可知这样做的优点,segment index file采取稀疏索引存储方式,它减少索引文件大小,通过mmap可以直接内存操作,稀疏索引为数据文件的每个对应message设置一个元数据指针,它比稠密索引节省了更多的存储空间,但查找起来需要消耗更多的时间。
2025-01-09 23:13:24
1013
3
原创 Kafka文件存储机制那些事9
在Kafka文件存储中,同一个topic下有多个不同partition,每个partition为一个目录,partiton命名规则为topic名称+有序序号,第一个partiton序号从0开始,序号最大值为partitions数量减1。从上述图3可知这样做的优点,segment index file采取稀疏索引存储方式,它减少索引文件大小,通过mmap可以直接内存操作,稀疏索引为数据文件的每个对应message设置一个元数据指针,它比稠密索引节省了更多的存储空间,但查找起来需要消耗更多的时间。
2025-01-09 23:13:22
689
2
原创 Kafka文件存储机制那些事10
在Kafka文件存储中,同一个topic下有多个不同partition,每个partition为一个目录,partiton命名规则为topic名称+有序序号,第一个partiton序号从0开始,序号最大值为partitions数量减1。从上述图3可知这样做的优点,segment index file采取稀疏索引存储方式,它减少索引文件大小,通过mmap可以直接内存操作,稀疏索引为数据文件的每个对应message设置一个元数据指针,它比稠密索引节省了更多的存储空间,但查找起来需要消耗更多的时间。
2025-01-09 23:13:19
942
1
原创 Kafka文件存储机制那些事11
在Kafka文件存储中,同一个topic下有多个不同partition,每个partition为一个目录,partiton命名规则为topic名称+有序序号,第一个partiton序号从0开始,序号最大值为partitions数量减1。从上述图3可知这样做的优点,segment index file采取稀疏索引存储方式,它减少索引文件大小,通过mmap可以直接内存操作,稀疏索引为数据文件的每个对应message设置一个元数据指针,它比稠密索引节省了更多的存储空间,但查找起来需要消耗更多的时间。
2025-01-09 23:13:16
1051
1
原创 Kafka文件存储机制那些事12
在Kafka文件存储中,同一个topic下有多个不同partition,每个partition为一个目录,partiton命名规则为topic名称+有序序号,第一个partiton序号从0开始,序号最大值为partitions数量减1。从上述图3可知这样做的优点,segment index file采取稀疏索引存储方式,它减少索引文件大小,通过mmap可以直接内存操作,稀疏索引为数据文件的每个对应message设置一个元数据指针,它比稠密索引节省了更多的存储空间,但查找起来需要消耗更多的时间。
2025-01-09 23:13:13
589
1
原创 Kafka文件存储机制那些事13
在Kafka文件存储中,同一个topic下有多个不同partition,每个partition为一个目录,partiton命名规则为topic名称+有序序号,第一个partiton序号从0开始,序号最大值为partitions数量减1。从上述图3可知这样做的优点,segment index file采取稀疏索引存储方式,它减少索引文件大小,通过mmap可以直接内存操作,稀疏索引为数据文件的每个对应message设置一个元数据指针,它比稠密索引节省了更多的存储空间,但查找起来需要消耗更多的时间。
2025-01-09 23:13:09
617
4
原创 Kafka文件存储机制那些事14
在Kafka文件存储中,同一个topic下有多个不同partition,每个partition为一个目录,partiton命名规则为topic名称+有序序号,第一个partiton序号从0开始,序号最大值为partitions数量减1。从上述图3可知这样做的优点,segment index file采取稀疏索引存储方式,它减少索引文件大小,通过mmap可以直接内存操作,稀疏索引为数据文件的每个对应message设置一个元数据指针,它比稠密索引节省了更多的存储空间,但查找起来需要消耗更多的时间。
2025-01-09 23:13:06
1166
2
原创 Kafka文件存储机制那些事15
在Kafka文件存储中,同一个topic下有多个不同partition,每个partition为一个目录,partiton命名规则为topic名称+有序序号,第一个partiton序号从0开始,序号最大值为partitions数量减1。从上述图3可知这样做的优点,segment index file采取稀疏索引存储方式,它减少索引文件大小,通过mmap可以直接内存操作,稀疏索引为数据文件的每个对应message设置一个元数据指针,它比稠密索引节省了更多的存储空间,但查找起来需要消耗更多的时间。
2025-01-09 23:13:04
656
2
原创 Java内存访问重排序的研究1
a = 1;x = b;});b = 1;y = a;});one.join();很容易想到这段代码的运行结果可能为(1,0)、(0,1)或(1,1),因为线程one可以在线程two开始之前就执行完了,也有可能反之,甚至有可能二者的指令是同时或交替执行的。然而,这段代码的执行结果也可能是(0,0). 因为,在实际运行时,代码指令可能并不是严格按照代码语句顺序执行的。得到(0,0)结果的语句执行过程,如下图所示。
2025-01-08 20:24:22
777
2
原创 Java内存访问重排序的研究2
a = 1;x = b;});b = 1;y = a;});one.join();很容易想到这段代码的运行结果可能为(1,0)、(0,1)或(1,1),因为线程one可以在线程two开始之前就执行完了,也有可能反之,甚至有可能二者的指令是同时或交替执行的。然而,这段代码的执行结果也可能是(0,0). 因为,在实际运行时,代码指令可能并不是严格按照代码语句顺序执行的。得到(0,0)结果的语句执行过程,如下图所示。
2025-01-08 20:24:20
966
4
原创 Java内存访问重排序的研究3
a = 1;x = b;});b = 1;y = a;});one.join();很容易想到这段代码的运行结果可能为(1,0)、(0,1)或(1,1),因为线程one可以在线程two开始之前就执行完了,也有可能反之,甚至有可能二者的指令是同时或交替执行的。然而,这段代码的执行结果也可能是(0,0). 因为,在实际运行时,代码指令可能并不是严格按照代码语句顺序执行的。得到(0,0)结果的语句执行过程,如下图所示。
2025-01-08 20:24:17
748
1
原创 Java内存访问重排序的研究4
a = 1;x = b;});b = 1;y = a;});one.join();很容易想到这段代码的运行结果可能为(1,0)、(0,1)或(1,1),因为线程one可以在线程two开始之前就执行完了,也有可能反之,甚至有可能二者的指令是同时或交替执行的。然而,这段代码的执行结果也可能是(0,0). 因为,在实际运行时,代码指令可能并不是严格按照代码语句顺序执行的。得到(0,0)结果的语句执行过程,如下图所示。
2025-01-08 20:24:14
662
1
原创 Java内存访问重排序的研究5
a = 1;x = b;});b = 1;y = a;});one.join();很容易想到这段代码的运行结果可能为(1,0)、(0,1)或(1,1),因为线程one可以在线程two开始之前就执行完了,也有可能反之,甚至有可能二者的指令是同时或交替执行的。然而,这段代码的执行结果也可能是(0,0). 因为,在实际运行时,代码指令可能并不是严格按照代码语句顺序执行的。得到(0,0)结果的语句执行过程,如下图所示。
2025-01-08 20:24:11
805
原创 Java内存访问重排序的研究6
a = 1;x = b;});b = 1;y = a;});one.join();很容易想到这段代码的运行结果可能为(1,0)、(0,1)或(1,1),因为线程one可以在线程two开始之前就执行完了,也有可能反之,甚至有可能二者的指令是同时或交替执行的。然而,这段代码的执行结果也可能是(0,0). 因为,在实际运行时,代码指令可能并不是严格按照代码语句顺序执行的。得到(0,0)结果的语句执行过程,如下图所示。
2025-01-08 20:24:09
577
2
原创 Java内存访问重排序的研究7
a = 1;x = b;});b = 1;y = a;});one.join();很容易想到这段代码的运行结果可能为(1,0)、(0,1)或(1,1),因为线程one可以在线程two开始之前就执行完了,也有可能反之,甚至有可能二者的指令是同时或交替执行的。然而,这段代码的执行结果也可能是(0,0). 因为,在实际运行时,代码指令可能并不是严格按照代码语句顺序执行的。得到(0,0)结果的语句执行过程,如下图所示。
2025-01-08 20:24:06
626
2
原创 Java内存访问重排序的研究8
a = 1;x = b;});b = 1;y = a;});one.join();很容易想到这段代码的运行结果可能为(1,0)、(0,1)或(1,1),因为线程one可以在线程two开始之前就执行完了,也有可能反之,甚至有可能二者的指令是同时或交替执行的。然而,这段代码的执行结果也可能是(0,0). 因为,在实际运行时,代码指令可能并不是严格按照代码语句顺序执行的。得到(0,0)结果的语句执行过程,如下图所示。
2025-01-08 20:24:04
767
3
原创 Java内存访问重排序的研究9
a = 1;x = b;});b = 1;y = a;});one.join();很容易想到这段代码的运行结果可能为(1,0)、(0,1)或(1,1),因为线程one可以在线程two开始之前就执行完了,也有可能反之,甚至有可能二者的指令是同时或交替执行的。然而,这段代码的执行结果也可能是(0,0). 因为,在实际运行时,代码指令可能并不是严格按照代码语句顺序执行的。得到(0,0)结果的语句执行过程,如下图所示。
2025-01-08 20:24:01
927
3
原创 Java内存访问重排序的研究10
a = 1;x = b;});b = 1;y = a;});one.join();很容易想到这段代码的运行结果可能为(1,0)、(0,1)或(1,1),因为线程one可以在线程two开始之前就执行完了,也有可能反之,甚至有可能二者的指令是同时或交替执行的。然而,这段代码的执行结果也可能是(0,0). 因为,在实际运行时,代码指令可能并不是严格按照代码语句顺序执行的。得到(0,0)结果的语句执行过程,如下图所示。
2025-01-08 20:23:58
770
1
原创 Java内存访问重排序的研究11
a = 1;x = b;});b = 1;y = a;});one.join();很容易想到这段代码的运行结果可能为(1,0)、(0,1)或(1,1),因为线程one可以在线程two开始之前就执行完了,也有可能反之,甚至有可能二者的指令是同时或交替执行的。然而,这段代码的执行结果也可能是(0,0). 因为,在实际运行时,代码指令可能并不是严格按照代码语句顺序执行的。得到(0,0)结果的语句执行过程,如下图所示。
2025-01-08 20:23:55
850
5
原创 Java内存访问重排序的研究12
a = 1;x = b;});b = 1;y = a;});one.join();很容易想到这段代码的运行结果可能为(1,0)、(0,1)或(1,1),因为线程one可以在线程two开始之前就执行完了,也有可能反之,甚至有可能二者的指令是同时或交替执行的。然而,这段代码的执行结果也可能是(0,0). 因为,在实际运行时,代码指令可能并不是严格按照代码语句顺序执行的。得到(0,0)结果的语句执行过程,如下图所示。
2025-01-08 20:23:53
924
1
原创 Java内存访问重排序的研究13
a = 1;x = b;});b = 1;y = a;});one.join();很容易想到这段代码的运行结果可能为(1,0)、(0,1)或(1,1),因为线程one可以在线程two开始之前就执行完了,也有可能反之,甚至有可能二者的指令是同时或交替执行的。然而,这段代码的执行结果也可能是(0,0). 因为,在实际运行时,代码指令可能并不是严格按照代码语句顺序执行的。得到(0,0)结果的语句执行过程,如下图所示。
2025-01-08 20:23:50
622
1
原创 Java内存访问重排序的研究14
a = 1;x = b;});b = 1;y = a;});one.join();很容易想到这段代码的运行结果可能为(1,0)、(0,1)或(1,1),因为线程one可以在线程two开始之前就执行完了,也有可能反之,甚至有可能二者的指令是同时或交替执行的。然而,这段代码的执行结果也可能是(0,0). 因为,在实际运行时,代码指令可能并不是严格按照代码语句顺序执行的。得到(0,0)结果的语句执行过程,如下图所示。
2025-01-08 20:23:47
612
3
原创 Java内存访问重排序的研究15
a = 1;x = b;});b = 1;y = a;});one.join();很容易想到这段代码的运行结果可能为(1,0)、(0,1)或(1,1),因为线程one可以在线程two开始之前就执行完了,也有可能反之,甚至有可能二者的指令是同时或交替执行的。然而,这段代码的执行结果也可能是(0,0). 因为,在实际运行时,代码指令可能并不是严格按照代码语句顺序执行的。得到(0,0)结果的语句执行过程,如下图所示。
2025-01-08 20:23:45
695
1
原创 MySQL Innodb中的事务隔离级别和锁的关系9
我们都知道事务的几种性质,数据库为了维护这些性质,尤其是一致性和隔离性,一般使用加锁这种方式。同时数据库又是个高并发的应用,同一时间会有大量的并发访问,如果加锁过度,会极大的降低并发处理能力。所以对于加锁的处理,可以说就是数据库对于事务处理的精髓所在。这里通过分析MySQL中InnoDB引擎的加锁机制,来抛砖引玉,让读者更好的理解,在事务处理中数据库到底做了什么。
2025-01-07 23:12:27
818
3
原创 MySQL Innodb中的事务隔离级别和锁的关系7
我们都知道事务的几种性质,数据库为了维护这些性质,尤其是一致性和隔离性,一般使用加锁这种方式。同时数据库又是个高并发的应用,同一时间会有大量的并发访问,如果加锁过度,会极大的降低并发处理能力。所以对于加锁的处理,可以说就是数据库对于事务处理的精髓所在。这里通过分析MySQL中InnoDB引擎的加锁机制,来抛砖引玉,让读者更好的理解,在事务处理中数据库到底做了什么。
2025-01-07 23:11:49
953
1
原创 MySQL Innodb中的事务隔离级别和锁的关系1
我们都知道事务的几种性质,数据库为了维护这些性质,尤其是一致性和隔离性,一般使用加锁这种方式。同时数据库又是个高并发的应用,同一时间会有大量的并发访问,如果加锁过度,会极大的降低并发处理能力。所以对于加锁的处理,可以说就是数据库对于事务处理的精髓所在。这里通过分析MySQL中InnoDB引擎的加锁机制,来抛砖引玉,让读者更好的理解,在事务处理中数据库到底做了什么。
2025-01-07 23:11:41
739
原创 MySQL Innodb中的事务隔离级别和锁的关系2
我们都知道事务的几种性质,数据库为了维护这些性质,尤其是一致性和隔离性,一般使用加锁这种方式。同时数据库又是个高并发的应用,同一时间会有大量的并发访问,如果加锁过度,会极大的降低并发处理能力。所以对于加锁的处理,可以说就是数据库对于事务处理的精髓所在。这里通过分析MySQL中InnoDB引擎的加锁机制,来抛砖引玉,让读者更好的理解,在事务处理中数据库到底做了什么。
2025-01-07 23:11:38
802
原创 MySQL Innodb中的事务隔离级别和锁的关系3
我们都知道事务的几种性质,数据库为了维护这些性质,尤其是一致性和隔离性,一般使用加锁这种方式。同时数据库又是个高并发的应用,同一时间会有大量的并发访问,如果加锁过度,会极大的降低并发处理能力。所以对于加锁的处理,可以说就是数据库对于事务处理的精髓所在。这里通过分析MySQL中InnoDB引擎的加锁机制,来抛砖引玉,让读者更好的理解,在事务处理中数据库到底做了什么。
2025-01-07 23:11:35
639
原创 MySQL Innodb中的事务隔离级别和锁的关系4
我们都知道事务的几种性质,数据库为了维护这些性质,尤其是一致性和隔离性,一般使用加锁这种方式。同时数据库又是个高并发的应用,同一时间会有大量的并发访问,如果加锁过度,会极大的降低并发处理能力。所以对于加锁的处理,可以说就是数据库对于事务处理的精髓所在。这里通过分析MySQL中InnoDB引擎的加锁机制,来抛砖引玉,让读者更好的理解,在事务处理中数据库到底做了什么。
2025-01-07 23:11:32
1033
2
原创 MySQL Innodb中的事务隔离级别和锁的关系5
我们都知道事务的几种性质,数据库为了维护这些性质,尤其是一致性和隔离性,一般使用加锁这种方式。同时数据库又是个高并发的应用,同一时间会有大量的并发访问,如果加锁过度,会极大的降低并发处理能力。所以对于加锁的处理,可以说就是数据库对于事务处理的精髓所在。这里通过分析MySQL中InnoDB引擎的加锁机制,来抛砖引玉,让读者更好的理解,在事务处理中数据库到底做了什么。
2025-01-07 23:11:29
709
1
原创 MySQL Innodb中的事务隔离级别和锁的关系6
我们都知道事务的几种性质,数据库为了维护这些性质,尤其是一致性和隔离性,一般使用加锁这种方式。同时数据库又是个高并发的应用,同一时间会有大量的并发访问,如果加锁过度,会极大的降低并发处理能力。所以对于加锁的处理,可以说就是数据库对于事务处理的精髓所在。这里通过分析MySQL中InnoDB引擎的加锁机制,来抛砖引玉,让读者更好的理解,在事务处理中数据库到底做了什么。
2025-01-07 23:11:26
969
3
原创 MySQL Innodb中的事务隔离级别和锁的关系8
我们都知道事务的几种性质,数据库为了维护这些性质,尤其是一致性和隔离性,一般使用加锁这种方式。同时数据库又是个高并发的应用,同一时间会有大量的并发访问,如果加锁过度,会极大的降低并发处理能力。所以对于加锁的处理,可以说就是数据库对于事务处理的精髓所在。这里通过分析MySQL中InnoDB引擎的加锁机制,来抛砖引玉,让读者更好的理解,在事务处理中数据库到底做了什么。
2025-01-07 23:11:20
847
1
原创 MySQL Innodb中的事务隔离级别和锁的关系10
我们都知道事务的几种性质,数据库为了维护这些性质,尤其是一致性和隔离性,一般使用加锁这种方式。同时数据库又是个高并发的应用,同一时间会有大量的并发访问,如果加锁过度,会极大的降低并发处理能力。所以对于加锁的处理,可以说就是数据库对于事务处理的精髓所在。这里通过分析MySQL中InnoDB引擎的加锁机制,来抛砖引玉,让读者更好的理解,在事务处理中数据库到底做了什么。
2025-01-07 23:11:15
675
2
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅